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Abstract— Rendering a stiff virtual wall remains a core
challenge in the field of haptics. A passivity study of this
problem is presented, which relates the maximum achievable
wall stiffness to the system discretization and sampling delays,
to the quantization of the encoder, to the inertia of the haptic
device, as well as to both the natural viscous and Coulomb
damping present in the haptic device. The resulting stability
criterion generalizes previously known results. Its analytic
derivation is verified in both simulation and experiments on
a one degree of freedom testbed.

Index Terms— Haptic Interfaces, Quantization, Coulomb
Friction, Passivity, Virtual Walls

I. INTRODUCTION

The aim of haptic interfaces is to render the mechanical
features of simulated objects on the user, thus allowing a
sensation of contact that would normally be experienced
when physically interacting with real objects.

To achieve a good degree of transparency, several issues
have to be taken into account in the design of a haptic
interface. For instance, the mechanical device should ex-
hibit low inertia and friction so that the user’s perception
is not affected by its dynamics [1] and a suitable trade-
off between the number of actuated and sensed degrees
of freedom (DOF) has to be devised depending on the
particular application [2].

From the control perspective, other factors have to be
carefully considered. Stiff virtual walls are commonly
implemented by means of a digital control loop. This
necessitates time-discretization as well as quantization of
the sensed position, stemming from the limited encoder
resolution, and of the commanded force, due to the D/A
converter resolution. When a stiff virtual object has to
be rendered, these non-idealities, together with the limited
bandwidth of the actuation system, can lead to unstable or
oscillatory behaviors that destroy the virtual reality illusion
and may even be harmful to the operator.

Passivity theory has been used in [3], [4] as the main
tool to provide stability conditions for a haptic display
interacting with a human operator. The operator has also
been described by passive but otherwise unknown elements
[5]. In particular, several previous works [6], [7] have
noted that the time delay introduced by the zero-order-
hold has the effect of injecting (generating) energy into
the system, in an amount proportional to the stiffness of
the virtual object. If the intrinsic friction of the device is
not sufficient to dissipate the excess energy, the interface
becomes unstable. In [8] this concept has been exploited
and generalized to the interaction with complex virtual

environments, accounting for computational delays and
different local models.

Much effort [9]–[11] has gone toward increasing the
stiffness of virtual objects without undermining the stability
of the overall system. However, the design of more effec-
tive control strategies requires a preliminary study on the
stability of a haptic display accounting for all phenomena
affecting the energy generation and dissipation while ren-
dering stiff objects. A more complete picture of the system
can facilitate the design of better mechanical structures,
including appropriate dimensioning of the sensors and
actuators. Similarly, results should predict the maximum
stiffness that can be displayed by existing devices.

Beyond time discretization, stability may be impacted
by quantization in the sensing/actuation system and by
the limited bandwidth of the current amplifier. This paper
analyzes the stability of a digital control loop in presence
of quantization noise. In comparison to previous works,
the nonlinearity represented by dynamic Coulomb friction
is considered together with viscous friction and it is shown
to be essential to avoid oscillations caused by quantization.
The paper is organized as follows: in Sec. II the basic
notation is introduced and the main passivity criterion is
stated and discussed. Simulation results to validate to the
criterion are given in Sec. III. The analytical proof is
provided in Sec. IV where a detailed discussion on the
energetic behavior of digital springs is included. Sec. V
presents the experimental results obtained on a simple
1 DOF device, while final remarks and future work are
discussed in Sec. VI.

II. MAIN RESULTS

Most commonly haptic displays must render the stiffness
of virtual objects, as sketched in Fig. 1, where a 1 DOF
device is depicted. The mechanical structure is charac-
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Fig. 1. Stiffness rendering by means of a haptic device

terized by the inertia m, the viscous friction b and the
dynamic Coulomb friction c; FH is the force applied by
the human operator while FV is the force exerted by the



control system that simulates a virtual wall of stiffness K.
Finally x and ẋ are the position and the velocity of the
device.

However, the haptic rendering is implemented by means
of components that can only approximate the scheme of
Fig. 1 and the deviation (non-ideality) introduced by each
component along the control loop has to be analyzed
in order to prevent oscillatory or unstable behaviors. As
shown in Fig. 2, beside the time delay related to the
discretization process, the quantization introduced by the
position sensor or by the D/A converter, whose resolution
is substantially higher, and the dynamics of the actuation
subsystem cause the force FV to be different from the force
that a physical unilateral spring would exert.
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Fig. 2. Block scheme of the human interaction with a digital spring

A. Problem Statement

With reference to the block scheme of Fig. 2, the motion
of the haptic device, modeled as a point-mass, is described
by the following differential equation:

mẍ(t) + bẋ(t) + c sgn (ẋ(t)) = FH(t) + FV (t) (1)

where b and c are the viscous and the dynamic Coulomb
friction coefficients. If the actuator dynamics is fast enough
to be ignored, the force exerted by the control system
simulating a linear spring for positive displacements:

FV (t)=−K∆
(⌊

x(hT )
∆

⌋
+

1
2

)
∀t∈ [hT, (h + 1)T [, h ∈ N

(2)
where T is the sampling time, h the discrete time variable,
and ∆ is the sensor resolution for the device. The notation
�.� is used to refer the integer part. The addition of the bias
of 1

2∆ creates a virtual force symmetric about the origin
and bounds the position measurement error by 1

2∆.
The main purpose of our analysis is to relate the dis-

played stiffness K to the behavior of the haptic device
and to identify what parameters of the system have to be
adjusted in order to achieve a passive interaction with the
human operator. For this reason, it is particularly useful to
try to reduce the number of parameters appearing in (1) by
carrying out a dimensionless analysis. In particular, if we
assume a dimensionless position ξ and time τ :

ξ :=
x

∆
τ :=

t

T
(3)

and if we agree that ξ̇(τ) = dξ(τ)/dτ , the dimensionless
velocity and acceleration are:

ẋ(t) =
∆
T

ξ̇(τ) ẍ(t) =
∆
T 2

ξ̈(τ) (4)

while dimensionless forces ϕH and ϕV are obtained divid-
ing by K∆, in particular:

ϕV (τ) :=
FV (τ)
K∆

=−
(
�ξ(h)�+ 1

2

)
∀τ ∈ [h, (h + 1)[, h ∈ N

(5)
Therefore, the differential equation (1) can be rewritten as:

µξ̈(τ) + βξ̇(τ) + σ sgn
(
ξ̇(τ)

)
= ϕH(τ) + ϕV (τ) (6)

whose dimensionless parameters are defined as:

µ :=
m

KT 2
β :=

b

KT
σ :=

c

K∆
(7)

B. Passivity Criterion

The dimensionless formulation emphasizes that the sys-
tem dynamics is governed by certain ratios between the
parameters instead of the value of each single parameter.
In particular, µ is proportional to the natural frequency
ωn =

√
K/m of the physical system and to the sampling

frequency ωs =2π/T ; and the Nyquist condition to avoid
aliasing ωs�2ωn, corresponds to µ � 1/π2. On the other
hand, the actual power dissipation does not depend only on
b and c but on their ratios with respect to the parameters
related to energy generation (see Sec. IV): the rendered
stiffness K, the sampling time T and the resolution ∆. For
this reason β and σ can be interpreted as effective friction
coefficients and it can be proved that, if the inequality:(

β − 1
2

)
+

∣∣∣ξ̇(τ)
∣∣∣−1

(
σ − 1

2

)
≥ 0 ∀τ > 0 (8)

holds, the haptic rendering of a wall of stiffness K, and
consequently the whole haptic display, is passive [8], [12].

Note that (8) does not depend on µ since a mass does
not generate nor dissipate energy, and on the force ϕH

exerted by the human operator, since he is an external
system with respect to the haptic device and cannot affect
its passivity. Moreover, it can be argued that at frequencies
above approximately 10 Hz, the human operator is inca-
pable of controlling the interaction impedance and can only
present stiffness together with substantial damping to the
haptic device. Therefore the operator helps recover stability,
dissipating excess energy and dampening vibrations or limit
cycles and, from this point of view, the worst case is when
the human input ϕH is null.

The inequality (8) can be seen as a generalization of
Colgate’s inequality [3] (β>1/2 in the dimensionless for-
mulation) to include dynamic Coulomb friction and sensor
quantization. Graphically it translates to areas of the (β, σ)
plane for which the overall system has different behaviors.
Passivity is guaranteed only for points on the right of the
critical line:

σ =
1
2
−

∣∣∣ξ̇(τ)
∣∣∣
(

β − 1
2

)
(9)

having slope −|ξ̇(τ)| and rotating, counterclock-wisely as
the velocity decreases, about the point (1/2, 1/2). This
line is vertical when ξ̇(τ) tends to infinity, while it is
horizontal when it tends to zero. This agrees with the



physical intuition, since the instantaneous power dissipation
provided by the dynamic Coulomb friction is larger than
the viscous dissipation at low velocities (|ξ̇(τ)| � σ/β),
while at high velocities the situation is inverted. According

σ

β

1
2

1
2

Globally

Stable (Passive)

Locally

Stable

Locally

Unstable

Globally

Unstable

Limit
Cycles

−
∣∣∣ξ̇(τ)

∣∣∣

Fig. 3. Stability regions of the (β, σ) plane.

to this result, the behaviors of the haptic display can be
classified depending on the values of β and σ, identifying
four different regions in the (β, σ) plane (Fig. 3):

a) β>1
2 , σ> 1

2 : points belonging to this region are char-
acterized by high values of effective friction and are
guaranteed to be passive regardless the initial condi-
tions; the system is therefore globally stable (provided
that the human operator is passive [5] as well).

b) β< 1
2 , σ< 1

2 : on the opposite of previous case, the dis-
sipation is never sufficient to dissipate energy excess
generated by the control algorithm and the system
becomes unstable (in the sense that at least a passive
human operator exists that cannot dissipate the extra-
energy generated).

c) β>1
2 , σ< 1

2 : this region gives rise to stable self-
sustained oscillations (limit cycles). Decaying veloci-
ties ξ̇(τ) rotate line (9) counter clockwise and prevent
points from staying to the right of the line. In turn
this prevents velocities from decaying further and
generates energy to sustain the oscillations.

d) β<1
2 , σ> 1

2 : in this case the stability of the system
depends on the initial velocity ξ̇(0). Indeed, if (8) is
satisfied at time τ = 0, the system dissipates energy
and the critical line rotates counterclock-wisely until
the equilibrium is reached. On the contrary, if at time
τ = 0 the characteristic point is on the left of the
critical line, the energy of the overall system increases
leading to instability because the line rotates clock-
wisely.

Because of this last observation, condition (8) can be
simplified to:

(
β − 1

2

)
+

∣∣∣ξ̇(0)
∣∣∣−1

(
σ − 1

2

)
≥ 0 (10)

i.e. by using the initial velocity of the system as opposed to
the velocity at a generic time τ . By recalling the definitions

(7) and (4), the passivity criterion can be rewritten as:(
b − KT

2

)
+ |ẋ(0)|−1

(
c − K∆

2

)
≥ 0 (11)

Moreover, on the (β, σ) plane it is possible to evalu-
ate the impact of technological parameters, e.g. encoder
resolution ∆ and sampling time T stability of a haptic
display given a stiffness level K. Indeed, since both β
and σ depend on K in the same way, a stiffness increase
moves the characteristic point along a line, as shown in
Fig. 4 for P1 and P2. On the other hand, an increase
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Fig. 4. Effects of variations of wall stiffness K, sampling time T and
encoder resolution ∆ on the (β, σ) plane.

of the sampling frequency moves the point to the right
horizontally (P2 to P3) and a reduction of ∆ corresponds
to a vertical movement (P3 to P4), thus improving the
stability of the overall system. Finally, because of (4), given
a physical velocity ẋ(t), the dimensionless velocity ξ̇(τ),
and therefore the slope of the critical line, depends on the
ratio T/∆.

III. SIMULATIONS

Before providing analytical proof of the passivity crite-
rion (10), simulation results are shown in order to evaluate
its accuracy. According to previous considerations, the
dimensionless model (6) has been simulated assuming no
initial deflection ξ(0) = 0, different initial velocities ξ̇(0)
and a null input from the human operator. Several points of
the (β, σ) plane have been simulated and the state vector
(ξ, ξ̇) has been evaluated for τ ∈ [0, 5×104] corresponding
to t = 50 sec. with a sampling time T = 1 ms, to determine
the stability for each couple of values of β and σ. In
Fig. 5(a) the results obtained with µ = 50 and four different
initial velocities are shown. The shaded areas, ranging from
black to light gray represent, for each initial velocity, the
regions of unstable behavior; the irregular profile is due
to the discrete number of points that have been simulated.
The critical lines associated to each case are dashed, while
the dash-dot lines are used to identify the four regions of
Fig. 3. A good correspondence between the predictions and
the simulation outcomes can be noticed, also by recalling
that (10) is the result of a worst case analysis.

If it is relatively easy to discriminate a converging
solution from a diverging one, numerical errors can affect
the detection of limit cycles. Therefore it has been em-
pirically assumed that if, at the end of the simulation, ξ̇
is below the threshold of 0.01 encoder ticks per sample,
the system converged to the equilibrium. Also in this case,
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Fig. 5. Unstable (left) and oscillating (right): simulation results (shaded
areas) and theoretical predictions (dashed lines) for different initial
velocities ξ̇(0) (whose values are reported in circles).

the simulations agree with the predictions, as shown in
Fig. 5(b), obtained with the same parameters of Fig. 5(a).
The fact that (10) comes from a worst case analysis is more
evident here, since limit cycles actually happen in a subset
of the predicted region. We also notice that the existence
of the limit cycle does not depend, in this region, on β and
σ; in other words even if the viscous friction is initially
well on the right of the critical line, a limit cycle arises.

IV. PASSIVITY ANALYSIS OF DIGITAL SPRINGS

The simulation of passive objects (e.g. virtual walls),
should be implemented in such a way that unrealistic
oscillations that could destroy the illusion of interacting
with real objects are avoided. Besides, if both the operator
and the haptic display are passive systems, their feedback
interconnection of Fig. 2 is still a passive, and therefore
globally stable system [12].

The passivity inequality [12] means that only a finite
amount of energy can be extracted from the system con-
stituted by the haptic device and its control algorithm. By
using the notion of dissipativity introduced by [13] and
[12], it is possible to relate the passivity of a system to
a positive definite state function HT (τ) = HT (ξ(τ), ξ̇(τ))
representing the stored energy:∫ τ1

τ0

ϕH(τ)ξ̇(τ)dτ ≥ HT (τ1)−HT (τ0) ∀τ1 ≥ τ0 (12)

If we explicitly take into account the power Pd(τ) that is
dissipated because of physical friction and the power Pg(τ)
that is “generated” by the non-idealities in the control loop
(energy leaks [7]), we have:∫ τ1

τ0

ϕH(τ)ξ̇(τ)dτ =HT (τ1)−HT (τ0)+
∫ τ1

τ0

[Pd(τ)−Pg(τ)] dτ

(13)
By comparing (12) to (13), the haptic display is passive
iff: ∫ τ1

τ0

Pd(τ)dτ ≥
∫ τ1

τ0

Pg(τ)dτ ∀τ1 ≥ τ0 (14)

The total energy HT (ξ, ξ̇) stored in the haptic display
is given by the sum of the kinetic energy of the device

and of the pseudo-elastic potential energy He(ξ) stored in
the quantized spring. To compute He(ξ), we rewrite the
relation between the real and the quantized position as:

ξ = �ξ� + ρ 0 ≤ ρ < 1 (15)

where ρ = ρ(ξ) represents the quantization error and is a
function exclusively of the position ξ. Note that the static
compensation of this error introduced in (5) has the effect
to translate vertically the diagram so that the magnitude of
the compensated error is bounded by 1

2 , but does not alter
the fact that ρ is a positional function. For this reason,
He(ξ) is expressed by:

He(ξ) = −
∫

ϕV (ξ)dξ =
1
2
ξ2 +

1
2

(
ρ(ξ) − ρ2(ξ)

)
(16)

where the term depending on ρ(ξ) is always positive
because ρ ∈ [0; 1[. Finally HT (ξ, ξ̇) is given by:

HT (ξ, ξ̇) =
1
2
µξ̇2 +

1
2

(
ξ2 + ρ(ξ) − ρ2(ξ)

)
(17)

A. Energy Leaks

Previous works [3], [6], [7] showed that energy genera-
tion for a time discrete, non quantized virtual spring occurs
because of the time-delay due to the zero-order-hold (see
Fig. 2). Indeed, the force/displacement diagram of a time
discrete spring shows that a negative hysteresis loop arises,
whose area represents the net amount of energy that is
generated. If we analyze the corresponding diagram of a
time-continuous, quantized spring, however, we note that
the compression and the restitution phases generate exactly
overlapping diagrams, because the quantization is a purely
positional function. Therefore we can conclude that energy
is not generated nor dissipated, even if the diagram differs
from that one of a physical spring, and quantization does
not cause energy leaks.

In the time discrete case, however, the quantization error
plays a role. Indeed, depending on the position when
sampling occurs, it happens that the generated energy
can be larger or smaller than in the non-quantized case.
Therefore quantization can affect the overall energy balance
and a worst case analysis is required.

The time discretization is associated to energy generation
for the system of Fig. 2. The amount of energy Eg(τ0, τ1)
that is generated during the time interval τ ∈ [τ0; τ1[ can be
computed by comparing the energy variation of the digital
spring (5) to its time continuous counterpart that exerts the
force ϕ(τ) = −�ξ(τ)� − 1

2 :

Eg(τ0,τ1)=
∫ τ1

τ0

Pg(τ)dτ =
∫ τ1

τ0

[ϕV (τ)−ϕ(τ)] ξ̇(τ)dτ (18)

Note that this approach is similar to what followed in [8]
and therefore the obtained results could be easily extended
the multidimensional case accounting for additional time
delays introduced e.g. by the complexity of the virtual
environment and by the settling time of the actuators.

Since the passivity inequality (14) has to be satisfied
for every τ1 ≥ τ0, we can initially suppose that both τ0

and τ1 belong to the same sampling interval (i.e. τ0, τ1 ∈



[h; (h + 1)[ ), and then extend the result obtained to every
h ∈ N. In this way, ϕV (τ) is constant over the integration
interval and therefore (18) can be rewritten as:

Eg(τ0, τ1) =
1
2

[
ξ(τ1) − ξ(τ0)

]2

+ Egq(τ0, τ1) (19)

where the first term is always positive and represents the
energy generated in the non-quantized case while the latter,
recalling (15) and assuming ρ0 = ρ(ξ(τ0)), ρ1 = ρ(ξ(τ1))
for notational simplicity, is defined as:

Egq(τ0, τ1) =
(
ρ0− 1

2

)(
�ξ(τ1)�−�ξ(τ0)�

)
− 1

2

(
ρ1−ρ0

)2

(20)
and represents the effect of position quantization.

It is easy to recognize that, according to what previously
observed, Egq can be either positive or negative. Since ρ(τ)
and �ξ(τ)� are independent quantities, it is possible now
to compute the maximum of Egq(τ0, τ1) with respect to ρ0

and ρ1. Remembering that ρ ∈ [0; 1[, (20) we have:

Egq(τ0,τ1)≤ 1
2

∣∣∣�ξ(τ1)�−�ξ(τ0)�
∣∣∣= 1

2

∣∣∣ξ(τ1)− ξ(τ0)
∣∣∣ (21)

because the maximum is reached, depending on the sign of
the displacement, when ρ0=ρ1=0 or ρ0=ρ1= 1.Therefore,
by recalling (19) we can state that the energy that is
generated during the considered time interval is upperly
bounded by:

Eg(τ0, τ1) ≤ 1
2

[
ξ(τ1)− ξ(τ0)

]2

+
1
2

∣∣∣ξ(τ1)− ξ(τ0)
∣∣∣ (22)

B. Energy Dissipation

In the model (1) of the haptic interface, we took into
account two main dissipative phenomena: viscous friction,
modeled by the dimensionless parameter β, and the dy-
namic Coulomb friction σ. This modeling choice corre-
sponds to a worst case scenario with respect to friction.
Indeed, especially at low velocities, other phenomena like
static Coulomb friction, Stribeck friction generally add
other dissipation, thus helping the system to preserve its
passivity, even if the overall transparency is affected.

By computing the amount of energy dissipated
Ed(τ0, τ1) by (6) during the same time interval considered
above, we have:

Ed(τ0, τ1)=
∫ τ1

τ0

Pd(τ)dτ =
∫ τ1

τ0

[
βξ̇2(τ)+σ|ξ̇(τ)|

]
dτ (23)

A lower bound on Ed(τ0, τ1) has to be computed in order
to carry out a worst case analysis on the energy dissipation.
For the term due to the dynamic Coulomb friction we have:∫ τ1

τ0

σ
∣∣∣ξ̇(τ)

∣∣∣ dτ ≥σ

∣∣∣∣
∫ τ1

τ0

ξ̇(τ)dτ

∣∣∣∣=σ
∣∣∣ξ(τ1) − ξ(τ0)

∣∣∣ (24)

while for the viscous friction the Cauchy-Schwarz inequal-
ity gives:�� τ1

τ0

ξ̇2(τ)dτ

� 1
2
�� τ1

τ0

12dτ

� 1
2 ≥

����
� τ1

τ0

1ξ̇(τ)dτ

����

=⇒
∫ τ1

τ0

βξ̇2(τ)dτ ≥ β

[
ξ(τ1) − ξ(τ0)

]2

τ1 − τ0
(25)

and finally the sum of (24) and (25) expresses the lower
bound on the the total dissipated energy energy:

Ed(τ0, τ1) ≥ β

[
ξ(τ1) − ξ(τ0)

]2

τ1 − τ0
+σ

∣∣∣ξ(τ1)− ξ(τ0)
∣∣∣ (26)

C. Passivity Condition

The passivity condition (14) has to be satisfied for every
τ1>τ0, therefore the minimum amount of dissipated energy
has to be larger than the maximum amount of generated
energy during the same time interval. Hence, by using (22)
and (26):

(
β−1

2

)[
ξ(τ1)−ξ(τ0)

]2

τ1−τ0
+

(
σ−1

2

)∣∣∣ξ(τ1)−ξ(τ0)
∣∣∣ ≥ 0 (27)

Since we assumed both τ0 and τ1 belonging to the same
sampling interval, we have that τ1− τ0 ≤ 1. Because of
the continuity of the velocity ξ̇(τ) the mean value theorem
holds, leading to:

|ξ(τ1)−ξ(τ0)|= |ξ̇(τ)|(τ1−τ0)≤|ξ̇(τ)|; τ0 <τ <τ1 (28)

Finally, by substituting into (27), we obtain the pas-
sivity condition (8). As noted in [3], the sufficiency of
this condition holds also when the unilateral constraint
representing the virtual wall is considered. Indeed, the
device is passive when ϕV is null and, when it is moving
the dissipation provided by intrinsic friction is larger than
energy generation. Therefore the virtual force ϕV can be
set to zero at any time without affecting the energy balance.

V. EXPERIMENTAL RESULTS

Experimental validation of the proposed criterion has
been carried out by means of a Maxon RE35 motor
equipped by an encoder having 8192 counts per revolution;
since it is a rotative device, positions and forces in (1)
correspond to angles and torques. A Copley 403 amplifier
was used and commanded via a 14 bit D/A interface from
the Linux-RTAI control loop. The actual encoder resolution
and the sampling time can be changed in the control
software, in this way we can test different points on the
(β, σ) plane, according to what sketched in Fig. 4.

The estimation of friction parameters of the device
leads to b=9×10−6 Nm/rad sec, c=2×10−3 Nm and
m=6.28×10−6 Kg m2; since in this case the Coulomb
dynamic friction is much larger than the viscous friction,
the device is likely to operate in the locally stable/unstable
region (see Fig. 3).

The initial velocity appearing in (10) is difficult to
measure. Therefore, to obtain more precise data, the initial
velocity has been converted into an initial displacement for
the virtual spring in such a way that the energy HT (ξ, ξ̇)
initially stored in the haptic display is the same. Fig. 6(a)
through 6(d) show the outcomes obtained with points in
each of the four regions of the (β, σ) plane. On the left
of each figure it is shown the characteristic point and the
critical line associated to the initial condition, while on the
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Fig. 6. Characteristic point and initial condition on the (β, σ) plane and position vs. time for different operating conditions.

right it is shown the temporal diagram of the angular dis-
placement; in this same diagram the dashed horizontal lines
correspond to ±1 encoder tick. Starting from Fig. 6(a), we
evaluated a point located in the globally stable region and,
despite the high initial condition represented by the slope of
the critical line, the position converges to the origin. Then,
by simulating a very poor encoder resolution, the behavior
of a point located in the limit cycles region is investigated,
(Fig. 6(b)) and, as predicted, we observe a persistent
oscillation bounded by the encoder resolution. By changing
the initial conditions, the behavior of a point located in the
locally stable region have been finally studied, Fig. 6(c) and
6(d). As expected, by increasing the initial energy stored
into the digital spring, the system becomes unstable.

VI. CONCLUSIONS

The dimensionless formulation of the model (1) allowed
a simple passivity analysis of the haptic interface, leading
to a general passivity criterion relating the intrinsic viscous
and Coulomb friction of the device to the displayed stiff-
ness, sampling time and encoder resolution. In particular,
it has been shown that, depending on the initial velocity,
stable interactions can be obtained even if the effective
viscous friction is small. Moreover, the criterion can be
used as a guideline in the dimensioning of the components
of a haptic device, establishing the motor parameters,
encoder resolution, and servo rate necessary to achieve the
desired stiffness.

In future work, we plan to expand the results to include
the amplifier’s bandwidth limitations as well as the motor’s
current limits. Also, we hope to utilize the findings to create
improved control algorithms which may adapt stiffness
to the device velocity or add virtual damping to remove
excess energy explicitly, ultimately providing better and
more robust haptic interfaces.
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