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Abstract

Rendering stiff virtual objects remains a core challenge
in the field of haptics. A study of this problem is presented,
which relates the maximum achievable object stiffness to
the elements of the control loop. In particular, we examine
how the sampling rate and quantization of position mea-
surements interact with the inertia, natural viscous, and
Coulomb damping of the haptic device. The resulting stabil-
ity criterion generalizes previously known conditions. Sim-
ulations and experimental results support the theoretical
analysis based on the passivity and describing function ap-
proaches.

1. Introduction

The field of haptics aims to provide the user with a sense
of touch while interacting with simulated objects in a vir-
tual world. It uses force feedback to render the mechanical
features of the virtual objects, striving to reproduce the sen-
sation of contact experienced with real objects.

Haptic devices are specifically designed to produce such
forces and provide a transparent connection between the
user and the artificial world. In particular, they exhibit low
intrinsic friction and inertia to minimize dynamic distortion
of the user’s perception [1]. This generally necessitates low
motor reduction ratios and efficient transmission elements.
Performance may also be optimized trading off the num-
ber of actuated and sensed degrees of freedom (DOF) based
on the expected application [2].

Connecting the user and haptic device to the virtual envi-
ronment requires a feedback control system commonly im-
plemented as a digital control loop. A typical system is de-
picted in Fig.1 for a single degree of freedom. The com-
puter interface entails time discretization and quantization
of position and force information, inserts computational de-
lays, and involves current amplification with limited band-
width.

Rendering contact with a stiff virtual wall remains a key
component and core challenge of haptics. This implies high
gain feedback in the haptic control loop, which is partic-
ularly demanding for low inertia and friction devices. The
afore-mentioned non-idealities limit performance and can

m

K
b

c

FAFH FV

xx xV

Haptic Device SimulationComputer InterfaceHuman Operator

A/D - D/A
INTERFACE

Figure 1. A single degree of freedom haptic interface render-

ing a virtual stiffness

lead to oscillatory or unstable behavior that destroys the il-
lusion of virtual reality and may even be harmful to the op-
erator.

Passivity theory has been used in [3–5] to view some
of these limitations and provide stability conditions; passiv-
ity is sufficient for stability if the operator is described by
unknown passive elements [6]. The time delay introduced
by the zero-order-hold generates and injects energy into the
system. This excess energy may cause instability if not dis-
sipated by the haptic device’s intrinsic friction or through
control [7]. These concepts are refined in [8] to consider
computational delay, in [9] to include Coulomb friction and
variable stiffness, while quantization effects are accounted
in [10].

This work aims to relate the achievable performance,
measured as the largest stable feedback, to the parameters
characterizing the main non-idealities of the control loop.
It accounts for the non-linearities introduced by the position
quantization and the dynamic Coulomb friction in the mech-
anism. The passivity analysis introduced in [11] is here in-
tegrated with an approximate analysis based on describing
function techniques, to show that, depending on other pa-
rameters such as the sampling frequency and the intrinsic
viscous friction, the rendering of a stiff virtual object can
be passive, locally stable, oscillating or unstable. Computa-
tional delays and limited amplifier’s bandwidth, even if not
directly considered in this paper, could be easily accounted
especially by means of the describing function approach.
Simulation and experimental data are shown to support the
theoretical findings. We hope this will facilitate both device
designers and programmers alike to create effective haptic
systems.

The paper is organized as follows: in Sect.2 the problem
is stated in detail and all elements and non-idealities are de-



fined. Sect.3 presents the main results of the work, introduc-
ing the stability criterion for the haptic system, discussing its
implications and its applications to common haptic devices.
Simulations, Sect.4, and experimental evidences obtained
using a single degree of freedom device, validate the theo-
retical findings. The analytical proof of the required passiv-
ity and energy generation arguments is presented in Sect.6,
followed by the describing function analysis in Sect.7. Fi-
nal remarks and future work are discussed in Sect.8.

2. Problem Statement

2.1. System Description

It is a common goal in the field of haptics to render con-
tact with a seemingly rigid virtual wall. This is generally
accomplished by simulating a stiff spring force that is dis-
played to the user through the haptic device while the vir-
tual contact is sustained. Our developments study the max-
imum achievable wall stiffness and its relation to the com-
puter interface and device parameters. As such, we focus on
a single degree of freedom depicted in Fig.1. The haptic de-
vice consists of a physical inertiam and has intrinsic fric-
tion, attributed to both viscous componentsb and dynamic
Coulomb componentsc. Its positionx and velocityẋ re-
sult from the forceFH applied by the human operator and
the forceFA exerted by the controller to simulate the vir-
tual stiffnessK.

A computer interface relates the continuous real device to
the discrete virtual world. As many researchers have recog-
nized, the elements constituting this interface can introduce
oscillatory or unstable behaviors. Shown in Fig.2, we exam-
ine quantization of the signal, discrete sampling at time in-
tervalsT and associated zero order hold, possible delays in
computation of the virtual environment, and amplifier dy-
namics. While quantization may stem from both the input
sensor and output D/A converter, we refer, without loss of
generality, only to the encoder. The equivalent resolutionof
the D/A converter is generally substantially higher.
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Figure 2. Block diagram of the haptic system, connecting the

human user with the virtual spring

Signal Dimensionless
Value

Time t τ :=
t

T

Position x ξ :=
x

∆

Velocity ẋ ξ̇(τ)=
dξ(τ)

dτ
=

ẋT

∆

Force F ϕ :=
F

K∆

Parameter Dimensionless
Value

Mass m µ :=
m

KT 2

Friction

Viscous b β :=
b

KT

Coulomb c σ :=
c

K∆

Table 1. Dimensionless signals and parameters

The haptic device is modeled as a point mass and can be
described by the differential equation

mẍ(t) + bẋ(t) + c sgn(ẋ(t)) = FH(t) + FA(t) (1)

Meanwhile, assuming no computational delay because of
the simplicity of the control law, the virtual spring force is
governed by:

FV (h) = −K∆

(⌊

x(hT )

∆

⌋

+
1

2

)

∀h ∈ N (2)

whereT is the sampling time,h denotes the discrete time
variable,∆ is the encoder resolution, and⌊.⌋ refers to the
integer part. Note the spring is assumed to be bidirectional,
which represents the worst case compared to a unidirec-
tional wall. Alternatively, this may be interpreted relative
to a steady state device position inside the virtual wall due
to a constant bias force holding the device in contact. We
place the originx = 0 at the encoder boundary nearest
the steady state position. Furthermore, we assume a resid-
ual bias of1/2K∆ in (2), so that the spring force is sym-
metric about the origin but finds no steady state value as
|FV (h)| ≥ 1

2
K∆. This poses the most challenging bound-

ary conditions for the controller. The zero order hold main-
tains this desired controller force during each servo cycle:

FC(t) = FV (h) ∀t ∈ [hT ; (h + 1)T [ , h ∈ N (3)

Finally, according to what discussed in the introduction, we
assume no limitations in the amplifier’s bandwidth, hence
FA(t) = FC(t).

2.2. Dimensionless Parametrization

To reduce the number of parameters, we perform a di-
mensional analysis. In particular, we measure position rela-
tive to a single encoder quantum∆, time relative to the sam-
pling intervalT , and force relative to the smallest force step
K∆ matching one encoder tick. Velocity is expressed rel-
ative to one encoder quantum per sampling interval∆/T .
The resulting dimensionless signals as well as device and
interface parameters are summarized in Table1.

Accordingly, the differential equation (1) may be rewrit-
ten as:

µξ̈(τ) + βξ̇(τ) + σ sgn
(

ξ̇(τ)
)

= ϕH(τ) + ϕA(τ) (4)



while the applied controller force simplifies to:

ϕA(τ) = −⌊ξ(h)⌋ − 1

2
∀τ ∈ [h; h + 1[ (5)

2.3. Stability Approach

Haptic systems are typically analyzed in the framework
of passivity, which provides a powerful tool showing that
combinations of passive elements are also passive and feed-
back loops of two passive elements are stable. We follow
this tradition while noting that a human operator is not pas-
sive and hence the stability of the haptic interaction can not
be immediately assumed. Fortunately common experience
shows that humans are skilled at interacting with passive ob-
jects and do so in a stable fashion [6].

More specifically, a human operator will actively move
at frequencies below 10 Hz and may generate energy. But in
this low frequency band the inertia and friction of the mech-
anism together with the simple virtual spring appear passive
and interactions are stable. Effects of computer interfaceap-
proximations and lag are negligible.

In contrast, at higher frequencies the artificial lag can
cause substantial problems. Instabilities usually occur at
several hundred Hertz. Here the user simply imposes an im-
pedance on the system, consisting of stiffness, damping, and
possibly added mass [12]. And while the impedance can
change with the user’s grip, it is not arbitrary; it necessarily
contains relatively low stiffness and high damping. Hence,
passivity of the system is not strictly necessary for stabil-
ity, though it remains sufficient.

The damping added by the operator could be lumped to-
gether with the friction inherent to the device. As such, we
consider the worst case scenario with minimal damping,
in which the user is not or barely touching the haptic de-
vice; the user adds negligible impedance to the system. This
matches practical experiences, where a heavy grip stabilizes
a system while a light grip is the most challenging. There-
fore, we focus on the passivity and stability of the internal
haptic loop connecting the virtual spring to the device iner-
tia.

3. Main Results

The main stability criterion, derived from the passivity
and the describing function analysis and supported by simu-
lation and experimental work, is stated and its implications
discussed. In particular, the stability criterion will be used to
interpret, on the basis of their physical parameters, the per-
formances that can be achieved by common haptic devices.

The haptic control system depicted in Fig.2 with zero de-
lay is stable if:

(

β − 1

2

)

+
∣

∣

∣
ξ̇0

∣

∣

∣

−1
(

σ − 1

2

)

≥ 0 and σ ≥ 1

2
(6)

where|ξ̇0| represents the maximum system velocity. For a
stable system, we can without loss of generality assume this
occurs at timeτ=0. For a stable limit cycle, this velocity will
be repeated at later times but is never exceeded. As the max-
imum velocity occurs at zero acceleration and hence zero
force, we can further assume a zero initial position (ξ0=0).
These initial conditions may also be interpreted as the mo-
ment of impact when deceleration begins.

If the haptic control system is sampled without quantiza-
tion, the stability criterion relaxes to

(

β − 1

2

)

+
∣

∣

∣
ξ̇0

∣

∣

∣

−1

σ ≥ 0 (7)

3.1. Interpretation

The inequalities (7) and (6) can be seen as generalizing
Colgate’s inequality (β>1/2 in the dimensionless formula-
tion) [4] to include dynamic Coulomb friction and sensor
quantization. From (7) we see in particular that Coulomb
friction may assist viscous damping especially for small ve-
locities, consistent with physical intuition. We also see qual-
itative distinctions between the two dissipation effects.From
(6), the viscous friction:

β ≥ 1

2
⇒ b ≥ KT

2
(8)

should balance the stiffness and effective delay due to the
sampling and zero order hold; the phase lag of the zero or-
der hold is compensated by the phase lead of the viscosity.
Coulomb friction:

σ ≥ 1

2
⇒ c ≥ K∆

2
(9)

must dominate the step force changes due to quantization to
avoid limit cycles.

The general combination of the two dissipations is best
viewed on the(β, σ) plane. Different regions demonstrate
different behavior, as depicted in Fig.3.

We first note from derivations in Sect.6 that at every in-
stant of timeτ power can not be generated if

σ − 1

2
≥ −

∣

∣

∣
ξ̇(τ)

∣

∣

∣

(

β − 1

2

)

(10)

This critical line intersects the point (β=1/2, σ=1/2) with
a slope of−|ξ̇(τ)|. It rotates between vertical (whenξ̇→∞)
and horizontal (wheṅξ→0). The individual regions describe
the behavior of the system, if it is operating at the(β, σ) val-
ues.

(a) β>1/2, σ>1/2: In this region the haptic loop is glob-
ally stable. It is the only region in which the resulting
system is passive (no energy generation regardless of
velocity and initial conditions). Indeed it is character-
ized by high values of both viscous and Coulomb fric-
tion that satisfy both (8) and (9).
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Figure 3. Stability regions of the (β, σ) plane.

(b) β>1/2, σ<1/2: This region gives rise to stable self-
sustained oscillations (limit cycles). At any operating
point, decaying velocitieṡξ(τ) rotate the critical line
(10) counter clockwise until power generation occurs
and supports the motion. The resulting energy produc-
tion renders the operating point non-passive, though
the system remains stable. The magnitude of the limit
cycle is furthermore limited below a single encoder
tick, so that the user may not observe the vibration or
may dampen it out.

(c) β<1/2, σ<1/2: With both viscous and Coulomb fric-
tion below their respective limits, systems operating in
this region may generate energy at all times. The de-
scribing function analysis confirms that the system is
unstable and at least under a light touch the haptic user
interaction will also be unstable.

(d) β<1/2, 1/2<σ<1/2+|ξ̇0|(1/2−β): Operating points
below the critical line (10) again generate power. How-
ever, unlike region (b), operating points that start below
the line will always remain below the line and are un-
stable. The instability is marked as local as it only oc-
curs if the initial velocity places the critical line above
the operating point.

(e) β<1/2, σ>1/2+|ξ̇0|(1/2−β): In the final region, op-
erating points are locally stable. Starting with a veloc-
ity that places the critical line (10) below the operating
point prevents energy generation at all times and leads
to a stable loop. Like region (b) this area is not pas-
sive, as its behavior depends on the initial velocity, but
it creates a stable haptic loop and a stable interaction
with the user.

The condition (6) may also be viewed in the dimensioned
form:

(

b−KT

2

)

+|ẋ0|−1

(

c−K∆

2

)

≥ 0 andc≥ K∆

2
(11)

and the impact of the parametersK, ∆, andT on the system
behavior can be evaluated. Bothβ andσ depend equally on
K, so that a stiffness increase moves an the operating point
in a straight line toward the origin, thus decreasing its dis-
tance from the unstable region. Meanwhile an increase of
the sampling frequency moves the point to the right horizon-
tally and a reduction of∆ corresponds to a vertical move-
ment thus improving the stability of the overall system.

3.2. Application to common devices

We find that most haptic devices in practice operate in
region (e). Identification procedures analogous to those pre-
sented in [13], allowed to estimate friction coefficients of
different commercially available devices and to relate them
to the maximum stiffness that can be rendered without os-
cillations and without human grasping. The devices taken

Device m b c ∆ T K µ β σ
[Kg] [Ns/m] [N] [µm] [ms] [N/m]

Omega 0.220 0.01 0.147 10 0.33 14500 136.6 0.002 1.01

Delta 0.250 0.01 0.883 30 0.33 14500 155.2 0.002 2.03

Impulse Engine 0.032 0.02 0.024 31.4 0.2 800 1007.8 0.13 0.97

Phantom 1.0 0.072 0.005 0.038 29.1 1 1015 70.55 0.004 1.29

Toolhandle 0.119 0.001 0.034 20.1 1 3125 38.19 0.0003 0.54

Human Operator 0.150 4.8 600

Table 2. Dimensionless parameters of common devices

into account are the Omega and the Delta from Force Di-
mension, the Impulse Engine 2000 force-feedback joystick
from Immersion, the Toolhandle [14] device and the Phan-
tom 1.0 [1] from Sensable. Collected data are summarized
in Table2, where the corresponding dimensionless parame-
ters are also shown. Note that in all cases, except the Impulse
Engine, the estimated viscous friction coefficients were es-
sentially bounded by the resolution of the measurement in-
struments and of the estimation techniques.

At high stiffnesses, common servo-rates and without hu-
man grip, the dissipation is dominated entirely by Coulomb
friction, which works well at low speeds. However, should
the system ever experience a large initial velocity:

ξ̇0 >
σ − 1/2

1/2 − β
⇒ ẋ0 >

2c − K∆

KT − 2b
(12)

it would become unstable and hence can not be described
as passive. Since we are operating at the edge of stability,
the actual velocitieṡξ0 were fairly low. On the other hand,
higher velocities can be experienced only when the oper-
ator is moving the device. The last row of Table2, taken
from [12], shows the corresponding data of the human op-
erator, that in the case of grasping sum to devices intrin-
sic parameters. Consistently with the discussion of Sect.2.3
in this case the viscous friction, provided by the operator is
substantial, thus helping the system to dissipate energy ex-
cess.
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Figure 4. Stability regions on the (β, σ) plane for µ = 100: dark areas are points detected to be unstable, light areas are persisting

oscillations, white areas are stable points for different values of ξ̇0.

4. Simulations

Before providing an analytical proof of the stability cri-
terion (6), it is worth examining the simulation results. Ac-
cording to previous considerations, the dimensionless model
(4) has been simulated assuming no initial deflectionξ(0) =
0, different initial velocitiesξ̇(0), and a null input from the
human operator. The stability of714 couples ofβ andσ has
been evaluated over the time intervalτ = [0, 5 × 104] cor-
responding to50 sec. with a sampling timeT = 1 ms.

Fig. 4 shows the results obtained withµ = 100 and four
different initial velocities. The dark areas represent, for each
initial velocity, the regions of unstable behavior. The light
areas represent regions of persisting oscillation. The white
areas are regions of stable behavior. The irregular profile is
due to the discrete number of points that have been simu-
lated. The critical lines associated to each case are dashed,
while the dash-dot lines are used to identify the regions of
Fig. 3. A good correspondence between the predictions and
the simulation outcomes can be noticed, also by recalling
that (6) is the result of a worst case analysis and the sys-
tem can be stable also in the region where (6) is not satis-
fied.

5. Experimental Results

Experimental validation of the proposed criterion has
been carried out by means of a Maxon RE35 motor equipped
with an encoder having 8192 counts per revolution. Since it
is a rotative device, positions and forces in (1) correspond to
angles and torques. The current amplifier, a Copley model
403, was commanded via a 14 bit D/A interface from the
RTAI-Linux control loop. The amplifier was configured to
have a bandwidth of3 KHz, substantially larger than the
servo rate that was changed to test different values ofβ up
to 1 KHz. Different values ofσ were obtained by artificially
reducing the encoder resolution in the control software.

The estimation of friction parameters of the device leads
to b = 9 × 10−6 Nm/rad sec,c = 2 × 10−3 Nm andm =
6.28×10−6 Kg m2; since in this case the Coulomb dynamic

friction is much larger than the viscous friction, analogously
to other haptic interfaces presented in Table2, the device is
likely to operate in the locally stable/unstable regions (d)-
(e) illustrated in Fig.3.

Because of the simplicity of the virtual environment and
the setup configuration, the computational delay and the
limitations on amplifier’s bandwidth were negligible, ac-
cording to the assumptions underlying the criterion (6). The
initial velocity determining the critical line on the(β, σ)
plane is difficult to measure and reproduce. Accurate re-
sults have been obtained by setting an initial displacement
for the virtual spring, which is bidirectional for these exper-
iments. In particular, the spring preload is computed in such
a way the initial energy of the system corresponds to the ki-
netic energy it would have withξ0 = 0 and the desired value
of ξ̇0.

Fig. 5.1 through5.3 show the outcomes obtained with
points in different regions of the(β, σ) plane. The left por-
tion of each figure shows the characteristic point and the
critical line associated with the initial condition, whilethe
right side shows the temporal diagram of the angular dis-
placement. In this same diagram, the dashed horizontal lines
correspond to±1 encoder tick. Starting from Fig.5.1, we
evaluated a point located in the globally stable region and,
despite the high initial condition represented by the slopeof
the critical line, the position converges to the origin. Then,
by simulating a very poor encoder resolution, the behavior
of a point located in the limit cycle region is investigated,
(Fig. 5.2) and as predicted, we observe a persistent oscil-
lation bounded by the encoder resolution. By changing the
initial conditions, the behavior of a point located in the lo-
cally stable region was finally studied in Fig.5.4and5.3. As
expected, the reduction of the initial energy stored into the
digital spring, or alternatively of the impact velocityξ̇0, sta-
bilizes the haptic device.

6. Passivity Analysis of Digital Springs

Human beings are particularly used to dealing with pas-
sive objects in their every day life, and therefore the simu-
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Figure 5. Experimental results for the one DOF device: (β, σ) plane and corresponding trajectories

lation of passive objects (e.g. virtual walls) should be im-
plemented in such a way that unrealistic oscillations that
could destroy the illusion of interacting with real objects
are avoided. Besides these considerations, if both the op-
erator and the haptic display are passive systems, their feed-
back interconnection through the signalsẋ(t) andFH(t) of
Fig. 2 is still a passive, and therefore globally stable, sys-
tem [15].

From an informal point of view, the system comprising
the device, the computer interface and the virtual environ-
ment (see Fig.2), is passive if only a finite amount of energy
can be extracted by the user. However, previous work [3–5]
showed that energy generation for a discrete time, non quan-
tized virtual spring occurs because of the time delays intro-
duced by the discrete time implementation of the virtual en-
vironment (Fig.2). This fact violates the passivity condi-
tion.

From a formal point of view, by using the notion of dissi-
pativity introduced by [16] and [15], the passivity of system
(4) can be expressed by means of the inequality:

∫ τ1

τ0

ϕH(τ)ξ̇(τ)dτ ≥ HT (τ1) −HT (τ0) ∀τ1 ≥ τ0

(13)
whereHT (τ) = HT (ξ(τ), ξ̇(τ)) is a positive definite func-
tion representing the energy stored in the system and
ϕH(τ)ξ̇(τ) is the dimensionless instantaneous power ex-
changed with the human operator.

If we explicitly take into account the powerPd(τ) that
is dissipated because of physical friction and the spurious
power generationPg(τ) due to the non-idealities in the con-

trol loop and in the computer interface, we have:

∫ τ1

τ0

ϕH(τ)ξ̇(τ)dτ = HT (τ1) −HT (τ0)+

+

∫ τ1

τ0

Pd(τ)dτ −
∫ τ1

τ0

Pg(τ)dτ

(14)

By comparing (13) with (14), the haptic display is passive
iff the storage functionHT exists and the following dissipa-
tion inequality is satisfied:

∫ τ1

τ0

Pd(τ)dτ ≥
∫ τ1

τ0

Pg(τ)dτ ∀τ1 ≥ τ0 (15)

6.1. Storage function of a quantized spring

As consequence of the previous discussion, a time con-
tinuous quantized spring is a lossless system, for which (13)
holds as equality. According to the model (4), the total en-
ergyHT (ξ, ξ̇) of the haptic display is given by the sum of
the kinetic energy of the device and of the pseudo-elastic po-
tential energyHe(ξ) stored in the quantized spring:

ϕQ(τ) = −⌊ξ(τ)⌋ − 1

2
(16)

For the purposes of the following sections a bilateral
spring will be assumed (i.e. the unilateral constraint is ig-
nored). As noted in [4], the sufficiency of (15) holds also
when the unilateral constraint representing the virtual wall
is considered. The device is passive when the applied force
ϕA is null and, when it is moving the dissipation provided



by intrinsic friction is larger than energy generation. There-
fore ϕA can be set to zero at any time without affecting the
energy balance.

To computeHe(ξ), we rewrite the relation between the
real and the quantized position as:

ξ = ⌊ξ⌋ + ρ 0 ≤ ρ < 1 (17)

whereρ = ρ(ξ) represents the quantization error and is a
function exclusively of the positionξ. Note that the static
compensation of this error introduced in (5) and (16) has
the effect to translate vertically the diagram so that the mag-
nitude of the compensated error is bounded by 1/2, but does
not alter the fact thatρ is a positional function. For this rea-
son,He(ξ) is expressed by:

He(ξ) = −
∫

ϕQ(ξ)dξ =
1

2
ξ2 +

1

2

(

ρ(ξ) − ρ2(ξ)
)

(18)

where the term depending onρ(ξ) is always positive be-
causeρ ∈ [0; 1[. FinallyHT (ξ, ξ̇) is given by:

HT (ξ, ξ̇) =
1

2
µξ̇2 +

1

2

(

ξ2 + ρ(ξ) − ρ2(ξ)
)

(19)

6.2. Energy Leaks

The amount of energyEg(τ0, τ1) that is generated during
the time intervalτ ∈ [τ0; τ1[ can be computed by comparing
the energy variation of the digital spring (5) to its lossless
time continuous counterpartϕQ:

Eg(τ0,τ1)=

∫ τ1

τ0

Pg(τ)dτ =

∫ τ1

τ0

[ϕA(τ)−ϕQ(τ)] ξ̇(τ)dτ

(20)
First of all we notice that, because of the zero-order-hold,
the force (5) applied by the control algorithm to the device
is constant for a sampling interval. Since the passivity in-
equality (15) has to be satisfied for everyτ1 ≥ τ0, the most
convenient way to evaluate the time integral (20) is to set
τ0 to h and to assumeτ1 ∈ [h; h + 1[. The results obtained
then have to hold for everyh ∈ N. In this way,ϕA(τ) is con-
stant during the integration interval and (20) can be rewrit-
ten as:

Eg(h, τ1) =

∫ τ1

h

(

⌊ξ(τ)⌋ − ⌊ξ(h)⌋
)

ξ̇(τ)dτ (21)

By means of (17), we can split the contribution to energy
generationEgz due to discretization and the contribution
Egq given by quantization:

Egz :=

∫ τ1

h

(

ξ(τ) − ξ(h)
)

ξ̇(τ)dτ (22)

Egq :=

∫ τ1

h

(

ρ(τ) − ρ(h)
)

ξ̇(τ)dτ (23)

whereρ(τ) = ρ(ξ(τ)) for notational simplicity.
Straightforward computations show that, when the de-

vice is moving (i.e.ξ(τ1) 6= ξ(h)), the zero order hold al-
ways contributes to energy generation:

Egz =
1

2

(

ξ(τ1) − ξ(h)
)2

(24)

Focusing now onEgq, we recall that the quantization er-
ror ρ(ξ(τ)) is a purely positional function and the following
expression is obtained:

Egq =
(

ρ(h) − 1

2

)(

⌊ξ(τ1)⌋ − ⌊ξ(h)⌋
)

+

− 1

2

(

ρ(τ1) − ρ(h)
)2

(25)

Since in generalρ(τ) and⌊ξ(τ)⌋ are independent quantities,
it is possible now to compute the maximum ofEgq with re-
spect toρ(h) andρ(τ1). Remembering thatρ ∈ [0; 1[, from
(25) we have:

Egq ≤ 1

2

∣

∣

∣
⌊ξ(τ1)⌋−⌊ξ(h)⌋

∣

∣

∣

MAX
=

1

2

∣

∣

∣
ξ(τ1)− ξ(h)

∣

∣

∣
(26)

because the maximum is reached, depending whether the
measured displacement⌊ξ(τ1)⌋ − ⌊ξ(h)⌋ is positive or neg-
ative, whenρ(h) = ρ(τ1) = 0 or ρ(h) = ρ(τ1) = 1.

Finally, by recalling (24), we can state that the generated
energy is upperly bounded by:

Eg(h, τ1) ≤
1

2

(

ξ(τ1) − ξ(h)
)2

+
1

2

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(27)

6.3. Energy Dissipation

In the model (1) of the haptic interface, we took into
account two main dissipative phenomena: viscous friction,
modeled by the dimensionless parameterβ, and the dy-
namic Coulomb frictionσ. This modeling choice corre-
sponds to a worst case scenario with respect to friction. In-
deed, especially at low velocities, other phenomena like sta-
tic Coulomb friction, Stribeck friction generally add other
dissipation, thus helping the system to preserve its passiv-
ity, even if the overall transparency is affected. On the other
hand, at low velocities the dynamic Coulomb friction is
more efficient than the viscous friction in dissipating the en-
ergy excess generated by the digital spring and it has to be
considered in order to obtain a more accurate estimate of the
maximum achievable stiffness.

The amount of energy dissipatedEd(h, τ1) by (4) during
the same time interval considered in Sect.6.2 is expressed
by:

Ed(h,τ1)=

∫ τ1

h

Pd(τ)dτ =

∫ τ1

h

[

βξ̇2(τ)+σ|ξ̇(τ)|
]

dτ (28)



A lower bound for the first term, representing dissipation
due to viscous friction, can be obtained from the Cauchy-
Schwarz inequality, that leads to:

∫ τ1

h

βξ̇2(τ)dτ ≥ β

(

ξ(τ1) − ξ(h)
)2

τ1 − h
(29)

while the term due to the dynamic Coulomb friction is
bounded by:

∫ τ1

h

σ
∣

∣

∣
ξ̇(τ)

∣

∣

∣
dτ ≥ σ

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(30)

Therefore the lower bound on (28) is obtained by summing
(29) and (30):

Ed ≥ β

(

ξ(τ1) − ξ(h)
)2

τ1 − h
+ σ

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(31)

Note that (31) expresses that the friction effects along the
path fromξ(h) to ξ(τ1) are minimized if the velocity is kept
constant.

Finally, becauseτ1 ∈ [h; h + 1[, a more conservative
bound is expressed by:

Ed ≥ β
(

ξ(τ1) − ξ(h)
)2

+ σ
∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(32)

6.4. Passivity Condition

The passivity condition (15) therefore reduces to the fol-
lowing worst-case inequality between the dissipated (32)
and generated energy (27) during the considered time in-
terval:
(

β−1

2

)(

ξ(τ1)−ξ(h)
)2

+
(

σ−1

2

)∣

∣

∣
ξ(τ1)−ξ(h)

∣

∣

∣
≥ 0 (33)

that has to be satisfied for everyτ1 ∈ [h; h + 1[ and for
everyh.

Note that whenξ(τ1) = ξ(h) there is no energy genera-
tion, so we can divide both the left and the right hand of (33)
by |ξ(τ1)− ξ(h)|. Moreover, since the velocity is a continu-
ous function, the mean value theorem holds forτ ∈ [h; τ1[:

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
= (τ1 − h)

∣

∣

∣
ξ̇(τ)

∣

∣

∣
≤

∣

∣

∣
ξ̇(τ)

∣

∣

∣
(34)

and the dissipation inequality simplifies to:

|ξ̇(τ)|
(

β − 1

2

)

+
(

σ − 1

2

)

≥ 0 (35)

that corresponds to (10), representing a line on the(β, σ)
plane rotating, as the instantaneous velocityξ̇(τ) changes,
about the point(1/2, 1/2).

As discussed in Sect.3.1, points havingβ>1/2 and
σ>1/2 are guaranteed to be passive because at each timeτ

they cannot be below the critical line. Points havingβ>1/2
andσ<1/2 cannot be unstable because the increase of ve-
locity due to energy generation causes the line to become
vertical, thus leading to dissipation. They however can gen-
erate instantaneous power as the slope of the line reduces;
in particular if a balance is reached between energy genera-
tion and dissipation, persisting oscillations are obtained.

The existence and the characterization of these limit cy-
cles will be discussed in the next section by means of the
describing function analysis.

7. Describing Function Analysis

The passivity analysis outlined in Sect.6 allowed us to
find a worst-case condition to ensure that energy generation
due to the digital nature of the virtual wall is always dom-
inated by the intrinsic energy dissipation of the device. In
particular, the condition and (6) results from the maximiza-
tion (26) of the energy generated because of quantization ef-
fects.

On the other hand, the describing function [17] is a sim-
ple and powerful tool to analyze the system behavior in
the “average” case, allowing us to provide estimates on the
amplitude and frequency of the self-sustained oscillations
(limit cycles) whose existence is predicted in Fig.3. More-
over, since the describing function allows to analyze the sta-
bility of oscillations as well, it is possible to use it to esti-
mate the transition on the(β, σ) plane from a stable to an
unstable behavior for different system parameters.

_

ξ̇ 1
s

D(M)

ξ
ϕA = µξ̈ + βξ̇ + σ sgnξ̇

e−s/2

ϕA

Device

ZOH

Figure 6. Block scheme for the approximate analysis.

In the following we will refer to the simplified block
scheme of Fig.6, where the dimensionless formulation (4) is
used. In particular, the zero-order-hold is approximated by a
time delay of1/2 and the encoder is represented by its de-
scribing functionD(M). Note that because of the integra-
tion required to obtain the positionξ from the velocityξ̇, the
loop transfer function has a low-pass characteristic that jus-
tifies the first-order approximation involved in the applica-
tion of the describing function method.

Let G(M,ω) denote the linear approximation of the non-
linear mapping (4) from ϕA to ξ representing the haptic de-
vice. From the Nyquist criterion, self-sustained oscillations
are likely to arise if:

G(M,ω) = −D(M)e−jω/2 (36)



7.1. Linearization of the model of the device

If we initially suppose the existence of sinusoidal oscil-
lation whose amplitudeM is measured in encoder ticks:

ξ(τ) = M sin(ωτ) M > 0, ω > 0 (37)

then the input-output mapping betweenϕA and ξ is ex-
pressed by:

ϕA(τ) = −µMω2 sin(ωτ) + βMω cos(ωτ)+

+ σ sgn(Mω cos(ωτ)) (38)

Since the Coulomb friction term maps the sinusoidal input
to a square wave, the linear model:

ϕA(τ) = M

[

−µω2 sin(ωτ)+

(

βω+
4σ

πM

)

cos(ωτ)

]

(39)

is the best linear approximation of (38) in the sense
that when neglecting higher order harmonics the cross-
correlation function is preserved [17]. Therefore the device
is approximated by:

ΦA(M,ω) = G(M,ω) Ξ(M,ω) =

=
[

−µω2 + j
(

βω + 4
σ

πM

)]

Ξ(M,ω)
(40)

whereΦA(M,ω) andΞ(M,ω) are the Fourier transforms
of ϕA(τ) andξ(τ). The dependency from the amplitudeM
has to be explicitly accounted because of Coulomb friction.

7.2. Describing function of the quantization

Since the quantization nonlinearity (2) is static and odd
with respect toξ, D(M) is real and does not depend on the
frequencyω. Under the hypothesis (37), its input-output re-
lation (5) is approximated by the recursive expression:

D(M) =
2

πM
+

4

πM2

⌊M⌋
∑

l=1

√

M2 − l2 (41)

According to the physical intuition we notice that quan-
tization effects are more relevant for small motions, while
the quantized measurements are good approximations of the
real displacements forM > 1. Let D1(M) = 2

πM , for am-
plitudesM < 1, D(M) can be approximated byD1(M); on
the other hand, for amplitudes larger than 1,D(M) quickly
tends to the unity. Within the limits of the approximated
quasi-linear analysis, (36) can be solved in these two sep-
arate cases, leading to two different families of oscillations.

7.3. Solution for small amplitude (M < 1)

If we assumeD(M) ≃ D1(M), the condition (36) for
the existence of limit cycle is expressed by:

2

πM
cos

ω

2
= µω2 ,

2

πM
sin

ω

2
= βω +

4σ

πM
(42)

Since the analytical computation of amplitude and fre-
quency of the limit cycle is difficult from (42), it is more
convenient to identify the(β, σ) loci characterized by a
given couple(M,ω). The first admits exactly one solu-
tion for ω < π and states thatM increases for larger
values of the dimensionless inertiaµ. The second equa-
tion can be hence rewritten as:

σ =
1

2
sin

ω

2
− β

2µω
cos

ω

2
ω ∈ [0;π[ (43)

Therefore, for a given frequencyω and for a given ampli-
tudeM < 1 satisfying (42) turns out to be the equation of
a line on the(β, σ) plane. Fig.7.3 shows the contour map
of lines obtained for different values of amplitude and fre-
quency. Sinceσ has to be positive, it is clear that small am-
plitude oscillations occur only forσ < 1/2 and that incre-
ments onM are translated to decrements onσ. Finally, the
stability analysis of limit cycles shows that they are stable.
This is the type of oscillations detected in Fig.5.2, whose
amplitude is bounded by one encoder tick.
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Figure 7. Contour maps of amplitude and frequency of small

stable (M<1, left) and large unstable oscillations (M>1,

right) for µ = 5.

7.4. Solution for large amplitude (M > 1)

On the other hand, for large amplitudes the encoder de-
scribing function is approximatelyD(M) ≃ 1 and (36)
reduces to the Nyquist criterion; therefore the oscillations
found in this case represent the transition from stability to
instability. In particular, we have:

cos
ω

2
= µω2 , sin

ω

2
= βω +

4σ

πM
(44)

As in the previous case, the first equation admits solution
only for ω < π, while the second leads to:

σ =
πM

4

(

sin
ω

2
− βω

)

ω ∈ [0;π[ (45)

The term in parentheses is positive only ifβ ≤ 1/2 and, as
Fig. 7.3 shows, large amplitude oscillations are only pos-
sible in regions having small viscous friction. Moreover,



if the frequency is sufficiently small thatcos(ω/2) and
sin(ω/2) can be approximated by their series expansions.
Since|ξ̇0| = Mω (i.e. the maximum velocity for the pseudo-
sinusoidal oscillations isMω) and in the(β, σ) plane the
linearization of (45) represents a line whose slope is−|ξ̇0|
and, analogously to the result of the passivity analysis, itis
a stability bound. Finally, noting thatω ≥ 1/

√
µ, the sys-

tem is conditionally stable only if:

σ ≥ π

4
√

µ

(

1

2
− β

)

(46)

Below this line the Nyquist criterion allows to conclude,
in the limits of this approximate analysis, that the system (4)
is unstable. Note the line depends on the dimensionless iner-
tia µ (see Tab.1). Also, with respect to the passivity analy-
sis, this new critical line rotates about the point( 1

2
, 0) in-

stead of( 1

2
, 1

2
). This difference is consistent with the fact

that (6) is obtained through the worst-case analysis outlined
in Sect.6, while (46) describes the “average” behavior with
respect to the quantization and Coulomb nonlinearities.

8. Conclusions

This work has examined the stability of a haptic dis-
play. It relates the inertia, viscous, and Coulomb frictionof
the device to the controller stiffness, sampling rate and en-
coder resolution. Using a dimensionless approach to sim-
plify the developments and highlight critical parameter com-
binations, a general stability criterion is presented.

Examining the instantaneous power balance of mechan-
ical dissipation and artificial generation, distinct behaviors
are identified and related to the system parameters. The be-
haviors are categorized as passive, locally stable, limit cy-
cles, and unstable. In comparison to this worst case analysis,
a describing function investigation provides insights on the
average system behavior. The results obtained the two dif-
ferent approaches are consistent and show that quantization
causes stable limit cycles in systems with little Coulomb
friction, while conditional stability occurs for limited vis-
cous damping. Finally, note that both the computational de-
lay and the limitations on the current amplifier’s bandwidth,
although not explicitly considered in this paper, can be eas-
ily accounted in the describing function setting.

We hope these insights will lead to better controllers for
existing haptic devices and ultimately improve the design of
future haptic displays.
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