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Abstract

In this paper we describe a new solution for stable haptic interac-
tion with deformable object simulations featuring low servo rates
and computational delays. The solution presented is a combination
of the local model and the virtual coupling concepts proposed in
the past. By varying the local model impedance depending on the
local stiffness of the deformable object, the interaction between local
model and simulation can always be made stable independently of
low servo rates or computational delays. Moreover, by using more
complex local impedances that feature an integral term, we are able
to control the steady-state error between the device and the surface
of the deformable object. This allows us to maximize theZ-width
of the simulation, while obtaining overall stable behavior without
using any added damping. The local model is always computed
using the current deformable object surface, thus allowing for multi-
point contact interaction, i.e., allowing multiple users to feel each
other’s influence on the object. The proposed solution is presented
and analyzed in a multirate setting. Experimental results employing
a Phantom haptic interface are presented.

KEY WORDS—haptic interfaces, deformable objects, multi-
point interaction, multi-rate, stability

1. Introduction

Obtaining stable haptic interaction with deformable objects,
such as those employed in force-feedback enhanced surgi-
cal simulators, is a challenging task. Deformable object algo-
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rithms can reach very high levels of computational complex-
ity, which translates into low servo rates and computational
delays. These effects, as shown by various authors in the past
(Colgate and Brown 1994; Gillespie and Cutkowsky 1996;
Niemeyer and Slotine 1997; Adams and Hannaford 1999),
can often lead to various forms of unstable behavior.

In order to limit such effects, various approaches have
been proposed in the past. Past solutions can be classified into
three main groups: simplify the deformable objects algorithms
in order to be less computationally heavy (Astley and Hay-
ward 1998; Cavusoglu and Tendick 2000; Cotin, Delingette,
and Ayache 2000); create a virtual coupling between hap-
tic device and virtual tool in order to ensure passivity of
the overall simulation (Colgate, Stanley, and Brown 1995;
Adams and Hannaford 1999); create a model that approxi-
mates the deformable object with which haptic interaction
can be computed at high servo rates (Adachi, Kumano, and
Ogino 1995; Mark et al. 1996; Balaniuk 1999; James and Pai
2001; Mazzella, Montgomery, and Latombe 2002; Mahvash
and Hayward 2003, 2004). Solutions that belong to the latter
two classes have the advantage of being simulation method
independent, i.e., can be equally used with any algorithm mod-
eling deformable objects. We will thus focus our attention on
these types of algorithms.

Algorithms belonging to the second class have the great
advantage of ensuring stable haptic interaction with a wide va-
riety of unknown virtual environments. In the most complete
work on stable haptic interaction to date, Miller, Colgate, and
Freeman (2000) show that haptic interaction with a very gen-
eral class of virtual environments (non-passive, delayed and
non-linear) can be accomplished by introducing additional
damping in the system. This means that engineers who wish
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to program virtual environments do not have to worry about
stability. The main drawback of these algorithms is, however,
that they rely on high servo rates, which often cannot be ac-
complished when interacting with deformable objects, and on
damping, which compromises the overall transparency.

Algorithms belonging to the third class have the advan-
tage of decoupling simulation and haptic rendering loop, thus
allowing high servo rates. Their application to the case of de-
formable object simulations featuring low servo rates as well
as computational delays however can be a very challenging
task. This is due to additional stability problems that do not
have to be considered in the case of rigid objects.

In this paper we present a haptic rendering algorithm that
allows for stable interaction with deformable objects featuring
computational delays and low servo rates, extending the re-
sults presented in Barbagli, Prattichizzo, and Salisbury (2003)
to a multirate setting. The solution presented is simulation
method independent and can be seen as a combination of
the two types of algorithms described above. More specif-
ically, our solution may be seen as a fast virtual coupling
or local model that adapts its parameters on-line to the lo-
cal impedance characteristics of the deformable object being
touched. This allows for stable haptic interaction and a high
level of transparency, since no additional damping is injected
in the system to make it stable. Here, stability refers to the
simulation loop that plays a key role to guarantee the over-
all stability as shown in experimental results. In other terms,
this work does not focus on the passivity analysis of the hap-
tic loop; however, extensive experimental results have shown
that stable behavior is obtained by applying the solution de-
scribed in this paper. A similar problem to that tackled in this
paper has been recently approached by Mahvash and Hay-
ward (2003, 2004) using a time-domain multirate passivity
analysis.

It is important to note that the presented solution allows
for multiple-point interaction, i.e., different users interacting
with a same object can feel each other’s influence. This feature
cannot be obtained by applying the standard haptic render-
ing algorithms (Zilles and Salisbury 1995; Ruspini, Kolarov,
and Khatib 1997; Balaniuk 1999; Mazzella, Montgomery, and
Latombe 2002) to the case of deformable objects and sets
this work apart from that of other research groups. To better
explain this point, let us consider an example of two users
touching a balloon filled with water in different points. Each
user globally deforms the object. As a consequence of such
global deformations, each user is able to feel the other user’s
influence. Clearly this is not possible if interaction forces are
computed based on a rigid shell of the object (Ruspini, Ko-
larov, and Khatib 1997).

In this paper we focus our attention on admittance de-
formable objects,1 whose elasto-static behavior can be com-

1. Impedance environments accept positions and return a new interaction
force.Admittance environments accept forces and return a new mesh position
(Adams and Hannaford 1999).

puted using a single matrix inversion, which is normally pre-
computed off-line before the simulation starts. Moreover, we
focus our attention on the case of impedance haptic devices2

such as the Phantom.
To the best of our knowledge, the only other example of

algorithms allowing multiple-point contact interaction with
deformable objects were proposed in James and Pai (2001).

2. Problem Description

The state of the art on deformable object simulation nor-
mally features computational delays as well as slow servo
rates (�100 Hz). One common practice that allows for high
servo rates while interacting with slowly simulated virtual en-
vironments is to decouple the haptic loop from the graphics
and simulation loops. Various techniques have been proposed
in the past in order to accomplish this in the case of rigid vir-
tual objects (Adachi, Kumano, and Ogino 1995; Mark et al.
1996; Balaniuk 1999). The basic idea behind all of these solu-
tions is to use a simple implicit function that approximates, to
a good extent, a small part of the object being touched. More
specifically, such intermediate representation, or local model,
represents the part of the object which is closest to the current
position of the haptic device. Figure 1 gives an idea of this
simple concept.

Such a model can be computed in the slow simulation loop
without the user noticing discontinuities, since the frequency
of the human hand movement is typically lower than the sim-
ulation frequency. Haptic rendering algorithms, such as the
proxy or god-object (Zilles and Salisbury 1995; Ruspini, Ko-
larov, and Khatib 1997), can run at high rates thanks to the
simplicity of the implicit surfaces involved.

Extending the local model technique to the case of multi-
point interaction with deformable object simulations featur-
ing computational delays and slow servo rates is non-trivial.
In order for different users to feel each other’s influence while

2. Impedance haptic devices accept forces and return positions (Adams and
Hannaford 1999).

Fig. 1. Local representation of object surface.
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touching a deformable object, a local model computed using
the current surface representation of the object should be used.
By doing so, any global deformation on the object (due to any
user) can be felt by all other users. However, this complicates
the overall stability of the system.

Computing a local model for rigid objects can be seen as
an “open loop” problem. Given a new probe position inside
the virtual environment (VE), a new local model can be com-
puted solely based on geometric considerations. The same
does not apply to deformable objects. The local model posi-
tion depends on the state of the object’s surface. This state, on
the other hand, depends on the interaction force between user
and virtual object, i.e., on the local model position. Hence a
closed loop is created. Such a closed loop can become unsta-
ble, as discussed in the following, thus driving both the VE
and the haptic interface in a vibrating state that completely de-
stroys any sense of realism. In order to avoid these problems,
a new local model, one not solely based on geometrical con-
siderations, must be defined. This can be seen as an adaptive
virtual coupling (Colgate, Stanley, and Brown 1995) whose
rate is completely decoupled from that of the deformable ob-
ject simulation.

2.1. Mathematical Description of the Problem

We consider the case of a one-dimensional deformable object
as shown in Figure 2 and approximate its behavior using its
local mechanical impedance. This corresponds to the case of
using a simple plane-based local model, which is tangent to the
object being touched at the point of contact, and simulating the
one-degree-of-freedom interaction with such an object along
the contact normal.

Referring to Figure 2, the mechanical impedance along the
x-direction can be a simple spring, a visco-elastic element or a
more complex dynamic model. If the mechanical impedance
is linear we can refer to it through its discrete-time transfer
function. Note that a linear impedance can be thought of as a
local approximation of a more involved dynamics along the
same direction. In this one-dimensional example, the position
of the proxy used on it is coincident with the free end of the
objectxo (Figure 2).

The local model can be chosen with different dynamic be-
haviors that are modeled by the discrete-time transfer func-
tion L(z). The system proposed in Figure 2 is multirate
in nature. EveryT secs a new haptic device positionxh

is sampled and a corresponding interaction force equal to
f (z) = L(z)[xh(z) − xo(z)] is fed back to the user. Such
a force is sampled everyNTs by the simulation block return-
ing a new deformable object surface position afterNT s, i.e.,
after a computational period.

The time-domain representation of the closed loop men-
tioned above, in the case of a one-dimensional deformable
object, is the one reported in Figure 3. Two closed loops ex-
ist. The haptic loop is a process that reads the new position
of the haptic interface while it is being moved by the human

x ohx

 L

x

Fig. 2. The mechanical model of the haptic interface in-
teracting with a deformable object. The probe position is
represented byxh and the proxy byxo. The inputs of the
local modelL are the proxy and the probe positions while
the output is the interaction force. The local model runs at
a faster rate than the simulation engine of the deformable
objects.

operator, computes the new interaction force with the local
model, and writes such force to the haptic interface. Such a
process runs at high servo rates greater than (1/T � 1 kHz).
This allows for maximization of the dynamic range of the
achievable impedances of the device orZ-width as defined in
Colgate and Brown (1994).

The simulation loop is a process that computes how the
interaction force between haptic interface and local model in-
fluences the deformable object surface. Such a process is usu-
ally slow due to the complexity of the simulated environment
(1/NT � 100 Hz). For simplicity such loops are considered
synchronized. Note that if the two loops are not synchronous,
it is always possible to consider an equivalent problem with
synchronized rates (Khargonekar, Poolla, and Tannenbaum
1985; Francis and Georgiou 1988).

Let k (k′) be the integer variable for the low (high) rate
time interval. In order to model the multirate nature of this
system, we use anN -fold decimator whose outputf (kN) of
the high rate signalf (k′) and theN -fold expander

xo(k
′) =

{
x̂o(kN), if k′ = kN

0, otherwise

are used as shown in Figure 3. Note that variablex̂o has been
used to distinguish the object surface position at low rate from
xo that is the corresponding fast rate variable obtained through
the expander.

In the next section we consider the stability of the simula-
tion as independent from the haptic loop, the one involving the
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f (k ) f (kN ) x̂o((k + 1 )N ) x̂o(kN )

xo(k )xh(k ) +

−

2π/ T

continuous time

Haptic Interface
&

Human Hand

Local Model

ω = 2 π/ T

Def. Obj.
Simul.

ω = 2 π/ NT

↓ N

decimator

Delay ↑ N

expander

ZOH

Fig. 3. All the blocks that are typically present in a deformable object simulation with haptic feedback. Two separate closed
loops exist. The lower one is referred to as the simulation loop.

+ −

f (k )
y(k) u(k)

xh(k ) = 0
L(z)

ω = 2 π/ T

↓ N

decimator

D (z)

ω = 2 π/ NT

1
z

ω = 2 π/ NT

↑ N

expander

x̄o(k )
H (z)

ω = 2 π/ T

Fig. 4. Simulation loop with generic discrete time transfer functions.

human operator. This is not sufficient to ensure overall stabil-
ity. However, the stability of the simulation loop plays a key
role to guarantee the overall stability as shown in experimental
data that supports the results presented in the following.

2.2. Simulation Loop Stability

In Figure 4L(z) is the discrete transfer function represent-
ing the local model force algorithm, andD(z) is the discrete
transfer function representing the deformable object surface
admittance relating the deformable object position at time-
step(k + 1)N to the force exerted on the object atk.

In Figure 4 a discrete-time zero-order hold described by

H(z) = 1 + z−1 + z−2 + · · · + z−(N−1) (1)

has been added after the expander to gain a zero-order hold
behavior of signals. Other types of holders can be simply taken
into account in this framework.

The analysis of stability and performance of the multirate
system of Figure 4 is approached in a multirate framework
based on lifting techniques (Khargonekar, Poolla, and Tan-
nenbaum 1985; Francis and Georgiou 1988). For the conve-

nience of the reader, we briefly recall the definition of the
lifted mapM̃ of a generic mapM defined through actions on
input–output time sequences:

M : (u(0), u(1), . . . , u(N), . . . )

→ (y(0), y(1), . . . , y(N), . . . ) (2)

M̃ :




u(0)

u(1)
...

u(N − 1)

 ,


u(N)

u(N + 1)
...

u(2N − 1)

 , . . .



→




y(0)

y(1)
...

y(N − 1)

 ,


y(N)

y(N + 1)
...

y(2N − 1)

 , . . .

 .

In Khargonekar, Poolla, and Tannenbaum (1985) and Francis
and Georgiou (1988) it has been proved that if dynamicsM is
linear, time-varying and periodic with periodN , it is equiva-
lent to a linear time invariant (LTI) system in the lifted domain
and that proving stability of lifted system̃M is equivalent to
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x̃h(k)

NNN 11
L̃ (z) SN

F̃ (k)

D (z) 1/z ST
N ZOH

x̃o(k)
+

Fig. 5. LTI equivalent system. The deformable object dynamics does not change whileL̃(z) is the lifted version, of the local
modelL(z), with N inputs andN outputs.

proving the stability ofM. It is worth noting that the lifted
system runs at a lower rate than the non-lifted one. In partic-
ular, the time-step of dynamics̃M is N times larger than the
time-step of dynamicsM. Henceforth we use symbol∼ for
all vectors and matrices defined in the lifted domain.

The basic idea is to find a system that is equivalent to that
in Figure 4 but for which only the slower servo rate (with
time indexk) is considered. This is done by first transforming
the multirate simulation loop in an equivalent periodic system
and then noticing that this is isomorphic to an LTI system with
slower servo rate(2πN)/T (Khargonekar, Poolla, and Tan-
nenbaum 1985; Francis and Georgiou 1988). In particular,
Lemmata 2.7 and 2.8 of Khargonekar, Poolla, and Tannen-
baum (1985) are the key results that allow us to use the meth-
ods from LTI stability analysis applied to the lifted systems
to study the multirate system in Figure 4.

It can be shown that the lifted LTI system can be repre-
sented by the block diagram reported in Figure 5. Note that
the lifted LTI system equivalent to the multirate system in
Figure 4 is no longer single input single output (SISO). In
particular, the input and output of the lifted local modelL̃(z)

areN -dimensional vectors. According to the vector notation,
the decimator can be modeled by the row vector

SN =
N︷ ︸︸ ︷

[ 1 0 · · · 0 ]

and the expander by the vectorST
N

. Let [AL, BL, CL, DL] be a
state space realization ofL(z) and letλ(k′) be its state vector
at fast rate. The low rate (time indexk) lifted dynamics̃L(z)

of the local model have state space realization, represented by
the quadruple[Ã, B̃, C̃, D̃] and state vector̃λ(k),

λ̃(k + 1) = Ã̃λ(k) + B̃ũ(k)

F̃ (k) = C̃λ̃(k) + D̃ũ(k)
(3)

with

λ̃(k) = λ(Nk), ũ(k) =


u(Nk)

u(Nk + 1)
...

u(Nk + N − 1)

 ,

F̃ (k) =


F(Nk)

F (Nk + 1)
...

F (Nk + N − 1)

 , (4)

and

Ã = AN

L
, B̃ = [AN−1

L
BLA

N−2
L

BL · · · BL]

C̃ =


CL

CLAL

...

CLA
N−1
L

 (5)

D̃ =



DL 0 · · · · · · 0

CLBL DL 0 · · · ...

CLALBL CLBL DL · · · ...
...

...
... 0

CLA
N−2
L BL CLA

N−1
L BL · · · · · · DL


.

Note that in the lifted dynamics only dimensions of input and
output vectors change while the state space dimension does
not.

The block diagram reported in Figure 5 can be further sim-
plified to obtain the block diagram in Figure 6 by noting the
following.

• The structure of the decimatorSN implies that only the
first output ofL̃(z) influences the deformable object
dynamicsD(z), i.e.,L̃ = [AN

L
, B̃, CL, DL].
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y(k)

−
xh

u(k)

D (z)L h
1
z

ω = 2 π/ NT

Fig. 6. SISO equivalent LTI system describing slow-rate
dynamics.

• For xh(k
′) = 0 the input toL̃ is a vector withN

equal elements, and thus the LTI system in Figure 5
is equivalent to that reported in Figure 6 withLh =
[AN

L
,

∑N−1
i=0 Ai

L
BL, CL, DL]. Note that this holds also

for N -steps piecewise constantxh(k
′) and not only for

zero values ofxh(k
′).

In the block scheme of Figure 6, both the local model and
the deformable object dynamics are SISO systems. Such a
system describes the behavior of the multirate simulation loop
at the slow rate and it can be used to conveniently analyze
the stability of the simulation loop. In fact, using the results
in Khargonekar, Poolla, and Tannenbaum (1985) it can be
shown that studying stability of the multirate loop in Figure 4
is equivalent to studying the stability of the LTI system in
Figure 6.

3. Proportional Local Model

Consider a one-dimensional deformable object whose local
mechanical impedance is a simple spring

Zo = Ko and D(z) = K−1
o

. (6)

Let the local model be proportional

L(z) = Kh.

The simulation loop analysis reduces to the study of the
closed-loop transfer function (Figure 6)

G(z) = 1

1 + (Ko/Kh)z
(7)

at the lower rateω = (2π/NT). The asymptotic stability is
guaranteed if and only if

Kh < Ko. (8)

Note that using a visco-elastic approximation of the de-
formable object generally results in more stable behavior than

in the case of a simple elastic approximation. In such a case,
in fact, we have

D(z) =
(

Ko + Bo

z − 1

z

)−1

(9)

whereBo is equal to the local damping of the deformable
object divided by the time intervalNT. The simulation loop
analysis reduces to the study of the closed-loop transfer
function

G(z) = (K0 + B0)z − Bo

(K0 + B0)z + Kh − B0

for which the asymptotic stability is guaranteed if and only if

Kh < Ko + 2Bo, (10)

which is always satisfied if stability is guaranteed in the ab-
sence of damping (eq. 8).

4. Problems With This Approach

Simply pickingKh andKo to satisfy eq. (8) in order to obtain
a stable behavior for the deformable object is not enough to
ensure a realistic haptic experience. Stability is in fact only one
aspect of a satisfactory system response. In the following we
closely examine both transient and steady-state response for
our system as well as the trade-offs between such behaviors.

4.1. Transient Response

Factors characterizing the transient response of a dynamic
system, such as settling time and overshoot, play a key role
in the case of realistic haptic interaction. In reality, a purely
elastic deformable object will assume a new surface config-
uration instantaneously and without vibrating. In our case,
however, this might not always be true and certain sets of pa-
rameters might lead to noticeable oscillations (see Figure 7).
Considering the transfer function (7), it appears obvious that
settling time (and overshoot) grows withKh/Ko, and thus to
limit such effectKh should be chosen such thatKo � Kh

whenever possible.

4.2. Steady-state Response

Factors characterizing the steady-state response of our sys-
tem are equally important in order to obtain an overall sense
of realism. In general, the stiffness perceived at steady state
by the user, calculated as the steady-state force divided by the
deformable object surface position change, is always equal
to Ko. However, due to the nature of impedance devices
(Yoshikawa et al. 1995), a position error, defined as the dis-
tance between proxy and haptic device position, is always
present. While such an error may go unnoticed at times due to
the limitations of the human position system, certain thresh-
olds exist above which the sense of realism is lost.
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Fig. 7. Linear spring response to a step input for (a)Ko = 0.9 N mm−1 andKh = 0.1 N mm−1, (b) Ko = 0.2 N mm−1 and
Kh = 0.19 N mm−1 and (c)Ko = 0.2 N mm−1 andKh = 0.22 N mm−1. The time-scale,x-axis, is in seconds while the proxy
and probe positions scales,y-axis, are in millimeters.

Such error is equivalent, in our specific case, to the steady-
state tracking error for a step input applied to system (7),
which is equal to

x̄o = Kh

Kh + Ko

xh. (11)

In order to limit the extent of such error to be under the human
position system perception threshold, it should beKo � Kh.
This would however drive the system to instability and thus
Kh should be chosen to be the closest possible toKo.

4.3. Trade-off Between Steady State and Transient Response

A trade-off between transient and steady-state response exists,
as mentioned above, and has been tested experimentally. In the
case ofKo � Kh, reported in Figure 7(a) whereKo = 9Kh,
the system response has virtually null settling time but the
steady-state error is very large since the surface approximately
moves only 1 cm for a physical movement of the haptic device
approximately equal to 6 cm.

In the case ofKo � Kh, reported in Figure 7(b) where
Kh = 0.19 N mm−1 and Ko = 0.2 N mm−1, the system
response has a settling time of about 2 s and it is thus clearly
perceived as an oscillatory effect. The steady-state distance
between proxy and Phantom position is however better, being
approximately equal to 25 mm for a surface deformation of
25 mm. In Figure 7(c),Kh > Ko and the system is clearly
unstable.

5. A Solution for Steady-state Impedance:
Using an Integral Term

The main problem of purely elastic local models is that, in
order to obtain a non-oscillatory force feedback, the steady-
state position of the device cannot be controlled and can often
be larger than desired. In order to solve this problem, a new

local model, enhanced with an integral term in parallel to
the proportional term used before, has been implemented. A
similar idea has been proposed and implemented in Massie
(1996) for the case of rigid virtual walls.

Referring to Figure 4, let us consider theZ-transform of
the local model to be

L(z) = Kh + T I

z − 1
= Kh + T Iz−1

1 − z−1
(12)

where coefficientI weighs the integral action of the local
model. Recall that both the proportional termKh and the
discrete integrator term(IT /z − 1), run at a high servo rate
(2π/T ) while the deformable object simulation runs slowly
(2π/NT). The basic idea of such a scheme is that the com-
puted force that is fed to the user and to the deformable object
simulation still depends on the haptic device penetration with
respect to the local model. However, the integral term elimi-
nates such error through time thus reducing the distance be-
tween proxy and haptic device position. This is accomplished
through a dual effect. On one side, the force fed back to the
user by the haptic device grows, pushing the user’s hand to-
wards the proxy position; on the other side, a larger force is
fed to the deformable object algorithm and thus tends to fur-
ther indent the simulated surface, i.e., move proxy and hand
position closer to each other.

Clearly the stability condition (8) will no longer hold true
since the discrete transfer function describing the local model
is no longer a simple proportional term. As for the case of the
simple proportional local model, it is possible to obtain the
closed-loop LTI system in Figure 6 for the stability analysis as

G(z) =
(

NTI

z − 1
+ Kh

)
1

zKo

(13)

and

F(z) = G(z)

1 + G(z)
. (14)
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Fig. 8. The stability area for parametersKh andINT givenKo of the object being touched.

In order to study how the stability of the simulation loop de-
pends on the parametersKo, Kh, andI , the method of Jury
(1964) has been applied. In order for the simulation loop to be
stable, the following conditions must hold (Ko > 0, Kh > 0,
andI > 0) {

|INT − Kh| < Ko,

INT − 2Kh > −2Ko.
(15)

These relationships lead to a stability area for parametersKh

andINT for a givenKo, as those depicted in Figure 8.
PickingKh andI inside such an area will lead to an asymp-

totically stable behavior for the simulation loop, unstable oth-
erwise. It is important to note that such an area has the same
shape for different values ofKo. Larger values ofKo imply
areas scaled upward. A stability volume such as that depicted
in Figure 8 can be defined.3 Interestingly, the simulation loop
tends to have larger slices for higher values ofKo, that is, it is
easier to obtain stability when dealing with stiffer objects (i.e.,
the simulation loop is easier to stabilize when stiffer objects
are simulated). This however does not mean that infinitely
stiff walls can be rendered due to the limits on theP term of
the local model imposed by the stability of the haptic loop
(Colgate and Brown 1994).

3. Note that only some slices of the solid are shown to better give the idea of
the volume.

The scalability of such areas is a consequence of the fact
that in eq. (13)G(z) can be expressed withKh and I nor-
malized with respect toKo. This makes the stability of the
simulation loop robust to errors due to the approximation of
the deformable object dynamics as its local stiffnessKo. In
fact, the values ofKh andI can always be picked based on
values ofKo lower than those returned by a deformable object
simulator in order to have a certain stability margin.

Note that, as for the case of proportional local model, also
in this case the stability condition can only be improved by the
presence of damping in the deformable object dynamics. In
fact, for visco-elastic local dynamics of the deformable object
(9), the stability loop analysis (Figure 6) reduces to the study
of the closed-loop transfer function

G(z) = (K0 + B0)z
2 + (−K0 − 2B0)z + B0

(K0 + B0)z2 + (Kh − K0 − 2B0)z + B + NI − Kh

and according to Jury’s method stability is met if and only if
the following conditions hold{

|INT − Kh + Bo| < Ko + Bo,

INT − 2Kh > −2Ko − 4Bo.
(16)

Conditions (16) are always satisfied if inequalities (15) hold,
i.e., if stability is guaranteed in the absence of damping in
object deformations,Bo = 0.
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Fig. 9. Probe and proxy positions for proportional,Kh = 0.1 N mm−1, and integral,I = 0.003 N mm−1 s−1 (with offset),
local model. The object is modeled with a spring with elasticityK0 = 0.3 N mm−1.

The effect of the proportional and integral local model has
been tested experimentally in the case ofKh = 0.1 N mm−1,
I = 0.003 N mm−1 s−1, K0 = 0.3 N mm−1, B0 =
0.0 N s mm−1. In Figure 9 the proxy and the haptic probe
position have been reported as a function of the time. The
advantages of using a proportional and integral local model
are clear: the steady-state error reduces to a user-defined off-
set introduced to avoid the limit condition where the proxy
and the haptic probe position coincide. Note that such a limit
condition would generate critical behavior to any collision
detection algorithms. Also the settling time improves with the
integral term.

5.1. Some Notes on Proportional Integral Local Models

While in theory the scheme proposed above accomplishes the
proposed goals, in practice some changes must be made in
order to adapt it to the real case of haptic interaction.

In order to prevent the surface of the deformable object
feeling unrealistically active, the feedback force to the user
should be null when the user is not in contact with the ob-
ject, i.e., when the proxy and haptic device positions coincide.
While this is implicit in the case of proportional local models,
the same does not hold for proportional integral ones. The
force due to the integral term should be eliminated. However,
this should not occur instantaneously when pulling out of the
object but should be a somewhat linear process. One possible
approach, successfully tested in this work, is based on driving
the integral term to zero linearly over an a priori fixed time
interval. If such an interval is picked to be comparable toNT,
the visual delay introduced by this solution will not be no-
ticeable. Moreover, the object surface will not pop up to its
original configuration but will do so in a more gradual way.
Typical time intervals can be small multiples ofNT. Longer
periods introduce higher delays on the surface movement but
lead to a nicer, more gradual force feedback effect.

The errore integrated by theI term must be chosen very
carefully. Choosing such an error as the distance between
proxy and haptic devices, i.e.,e = xh − xo, may lead to unre-
alistic effects. In such a case, in fact, theI term will tend to
force proxy and haptic device positions to be as close as possi-
ble, ultimately leading to an “object exiting” situation such as
that described above. Feeding theI term withe = xh −xo −θ ,
whereθ is given by

θ =
{

0 if e < 0, i.e., no contact
θ̄ if e > 0, i.e., when there is contact

(17)

and θ̄ is the maximum error between proxy and device po-
sitions that we decide to tolerate at steady state, will ensure
“enough” distance between proxy and haptic devices.

The side effect of using an “integration threshold” is that a
steady-state error will always be present. However, the extent
of such error is always controllable and can be made very
small. In the end, every force will be affected, at steady state,
by a small offset error, which is an acceptable compromise on
the overall performances of the system.

In practice, a variable thresholdθ has been used. More
specifically,θ can be made a function of the HI device pen-
etration speed, i.e.,̇e = ẋo − ẋh, or/and on the current total
value of the integral term. In the current implementationθ is
given by

θ =



0 if e < 0, i.e. no contact

θ̄1 if e > 0 and(ẋo − ẋh) < 0

θ̄2
Itot

if e > 0 and(ẋo − ẋh) > 0 andItot < Ītot

θ̄2 if e > 0 and(ẋo − ẋh) > 0 andItot > Ītot .

(18)

Hence,θ is zero when there is no contact with the object; it
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grows linearly when penetrating the object up to a certain limit
and then is fixed to such limit; it is set to different values when
entering an object and when exiting an object. The value ofθ

should linearly grow to its set valuēθ2 while penetrating the
object, because otherwise the integral term would not be active
for penetrations smaller than̄θ2. Moreover, it is very useful to
have different values ofθ depending on the penetration speed
and sign. In fact, it is usually desirable to have small thresholds
while penetrating an object, in order to limit the steady-state
force offset, and large thresholds while exiting the object, in
order to limit the cases when the penetration error drops to zero
and the surface is brought back to its original configuration.

6. Local Model Algorithm

The algorithm we have used in conjunction with slowly
simulated deformable objects can be summarized as in the
following.

Algorithm

Step 1. The local model is calculated inside the slow simula-
tion loop using the current surface configuration of the
deformable object, as if it was static. In order to simu-
late the local geometry of the deformable object at the
contact point we employ simple geometric primitives,
such as planes and spheres, as proposed in Adachi, Ku-
mano, and Ogino (1995) and Balaniuk (1999).

Step 2. Kh (and eventuallyI ) are chosen inside the volume
described in Figure 8. We assume that the value of
Ko is returned by the algorithm used to simulate the
deformable object, i.e., this paper does not deal with
methods to estimate local stiffness (real or apparent)
of deformable objects. It is important to note, however,
that the overall stability of the local model is robust to
errors onKo if the local model’sKh andI terms are
computed using a value ofKo lower than that returned
by the deformable object simulation algorithm.

Step 3. The force that the local model returns to deformable
object simulation, for it to compute its next configura-
tion, is evaluated as the last force returned to the haptic
device.

In the case of very large computational delays, the user
still has the impression of touching a deformable object. In
such cases, the local model results as an even more funda-
mental block since it allows for fast collision detection, given
its simple shape (plane or sphere), and stable interaction.4

7. Experiment

The proposed proxy algorithm has been tested using a Phan-
tom Desktop device. A simple experimental testbed has been

4. Using a normal virtual coupling with a delay of 10 ms, for instance, would
result in the user penetrating the virtual object too much and obtaining an
unrealistic force response.

set up for one-dimensional experiments. In particular, the un-
deformed object surface is at 0 mm and collision is detected
when the Phantom probe is lower or equal to 0 mm.After colli-
sion is detected, the proxy algorithm starts and a displacement
between the Phantom probe and the proxy is processed by the
local modelL(z) at 1 kHz generating the force fed back to the
user and to the deformable object running at 20 Hz. Plots in
Figures 7 and 9 refer to the case of proportional local model
and proportional and integral local model, respectively. The
time-scale,x-axis, is in seconds while the proxy and probe
positions scales,y-axis, are in millimeters.

As pointed out in the previous sections, Figure 7 shows
how low steady-state errors can be gained to the detriment of
settling time and stability. In fact, in Figure 7(b)Ko is closer to
Kh and the settling time is larger than the case of Figure 7(a)
whereKh � Ko or lower than the case of Figure 7(c) where
the stability condition (8) is not satisfied.

In Figure 9 plots of proxy and probe position over time have
been reported for the proportional and integral local model.
The integral action yields both low steady-state error and set-
tling time.An offset equal to 4 mm has been added to the error
signal integrated over time by the local model. Consequently,
the steady-state error in Figure 9 is equal to 4 mm. Recall that
the integral input offset is required to avoid collision detection
algorithm problems.

The proposed algorithm has been also used to control the
contact interaction with more complex deformable objects as
those reported in Figure 10. Deformations and forces along
normal directions to the undeformed object are managed ac-
cording to the proposed algorithm. In particular, a simple pro-
portional local model is used. In Figure 10(a) the proportional
gain of the local model is set to 0.6 N mm−1 while in Fig-
ure 10(b) it is set to 0.7 N mm−1. The result is that in the
first case the difference between the proxy and the Phantom
probe is lower than the second case, which exhibits a lower
steady-state error.

Figure 11 shows some frames of an unstable behav-
ior video sequence. This is obtained by increasingKh to
1.2 N mm−1, which does not satisfy the stability condition
(8) Ko = 1.0 N mm−1 (Extension 1).

In Figures 10 and 11 the propagation of the deforma-
tion from the contact point to the neighborhoods is obtained
through suitable shape functions. The proposed proxy algo-
rithm for deformable objects can be easily rearranged in a
multipoint contact framework (Extension 2). Details on force
and displacement propagation and on multipoint contact can
be found in de Pascale et al. (2004).

8. Conclusions

In this paper we have described new techniques allowing users
to haptically interact with a deformable object simulation fea-
turing computational delays and low servo rates. In order to
have stable interaction, we propose an adaptive local model (or
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(a) (b)

Fig. 10. A deformable object represented by triangular meshes. The local model gainKh is set to 0.7 N mm−1 in (a) and to
0.6 N mm−1 in (b).

(a) (b)

(c) (d)

Fig. 11. Unstable sequence of haptic interaction with deformable objects. In this case instability is due to the high level of the
local model proportional gain,Kh = 1.2 N mm−1.
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virtual coupling) approach that allows for fast collision detec-
tion, largeZ-widths without any need for additional damping
in the system. The method is suitable to be embedded in multi-
point contact interaction algorithms. The stability analysis has
been investigated for the simulation loop in a multirate frame-
work. In particular, the lifting technique has been used to study
system stability of multirate systems. The main result is that
when the local model is a static gain, then in order to guaran-
tee stability the local model must be less stiff than the object
at the contact point as shown in eq. (8). Proportional integral
based local models have been proposed to avoid steady-state
errors and the stability condition of the simulation loop here
involves also the computational delayNTas shown in eq. (16).
Although the main results deal with a single degree of freedom
and with simple deformable object dynamics, the algorithm
proposed in Section 6 shows a possible way to extend our
algorithm to more involved object geometry and deformable
dynamics exploiting previous results existing in the literature.

This work deals with admittance environments in the sense
that the deformable object accept forces and return positions.
Work is in progress to extend the paper results to impedance
environments. This work does not take into account the pas-
sivity analysis of the haptic loop including the human operator
and does not considered the perception studies to investigate
the effect of the local model on the realism of the tactile per-
ception.Work is in progress to extend the result to the passivity
analysis and the perception study. However, extensive exper-
imental results have shown that stable and realistic behaviors
are obtained by applying the algorithm described in this paper.

Finally, it is important to note that this work does not pro-
pose any new advancement in how to geometrically approx-
imate the surface of a deformable object, but simply deals
with how to choose the local stiffness of local models based
on pre-existing techniques in order to obtain stable interac-
tion. Work is in progress to apply the proposed techniques
to the proxy algorithm previously proposed by Ruspini and
Khatib. This would allow us to avoid the step of computing the
local model, although it still would require us to perform col-
lision detection with a deformable object, which is normally
a computationally heavy process.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video Stable and unstable behaviours
of contact interaction

2 Video Two-point interaction (feeling
each-other influence)
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