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Abstract.  One important technique common throughout surgery is achieving 
proper exposure of critical anatomic structures so that their shapes, which may 
vary somewhat among patients, can be confidently established and avoided.  In 
this paper, we present an algorithm for determining which regions of selected 
structures are properly exposed in the context of a mastoidectomy simulation.  
Furthermore, our algorithm then finds and displays all other points along the 
surface of the structure that lie along a sufficiently short and straight path from an 
exposed portion such that their locations can be safely inferred.  Finally, we 
present an algorithm for providing realistic visual cues about underlying structures 
with view-dependent shading of the bone.     
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Introduction 

In addition to providing the obvious advantages of low-cost, easily-accessible training 
opportunities, computerized surgical simulators are in position to take advantage of 
complete knowledge of the virtual environment and of the user's actions to analyze 
performance with regards to a wide range of elements of good surgical technique and to 
afford the trainee with valuable constructive criticism.  Although some existing 
simulators report rudimentary metrics such as time to completion and collisions 
between instruments and objects that should not be touched, the development and 
generalization of metrics for a wide variety of surgical procedures remains an important 
open problem in the field. 
 
In close collaboration with an otolaryngologist, we have developed a visuo-haptic 
simulator for mastoidectomy, a surgical procedure in which a portion of the temporal 
bone is drilled away in order to access the inner ear [1].  A data file is recorded when a 
user runs the simulator, and this file can be read and played back in a program that 
allows performance to be visualized and analyzed.  We have devised, and are 
continuing to develop, a number of metrics for use with this simulator, including 
comparisons of the trainee's force profiles, velocity profiles, and bone removal 
characteristics to those of "model" mastoidectomies performed on the simulator by 
expert surgeons.   
 



One important technique common throughout surgery is achieving proper exposure of 
critical anatomic structures so that their shapes, which may vary somewhat among 
patients, can be confidently established and avoided.  In the context of this procedure, 
achieving proper exposure involves drilling until only a thin layer of bone remains over 
vulnerable structures (such as the facial nerve, sigmoid sinus, and dura).  When the 
layer of bone is sufficiently thin, the structure can be seen, due to the partial 
transparency of the bone.  Although it is not necessary to expose the entire structure, 
many, such as nerves and blood vessels, twist and turn in unpredictable ways, so it is 
imperative to expose enough of it such that the entire shape of the structure (within the 
surgical field) can be confidently inferred. 
 
A few simulators, such as 5DT’s Upper GI Endoscopy Simulator, track percentage of 
surface area visualized with the scope [2].  We have previously reported on a related 
metric that determines whether bone was within the user’s field of view when drilled 
away, since it is essential to maintain proper visibility of the drilling region [3].  This 
enables the surgeon to avoid vulnerable structures just below the bone surface.  If 
instead some bone is removed by “undercutting” (drilling beneath a shelf of bone that 
obscures visibility), there is increased risk of damaging these structures. 
 
In order to accurately measure a trainee’s ability to properly expose critical structures, 
the simulator must provide the user with realistic cues as to the structures’ locations.  In 
temporal bone surgery, the most important cues are visual, as a thin layer of bone is 
sufficiently translucent to make out underlying structures.  This visual effect must 
therefore be provided in the simulator in order for our exposure metrics to be 
meaningful. 

1.  Direct Exposure 

In our simulator, soft tissue structures are modeled using triangulated meshes, while the 
bone is represented using a hybrid data structure that allows computation of appropriate 
drill forces using rapid collision-detection in a spatially-discretized volumetric voxel 
representation while graphically rendering a smooth triangular mesh that is modified in 
real-time as the voxels are drilled away.   
 
A given point on a structure is considered fully exposed when the ray from the given 
point to the viewpoint does not intersect any bone voxels nor any other soft tissue 
structures.  Intersection between this ray and the other meshes is checked using an axis-
aligned bounding box hierarchy [4], and collision detection between the ray and the 
bone is performed by sampling the ray at small increments (proportional to the voxel 
grid resolution) and directly indexing into the voxel array for each sample position to 
determine if there is a bone voxel at that location.  This method does not guarantee that 
all ray-voxel intersections are found; the ray may cut through a corner of a voxel 
between samples.  This could be remedied by sampling at increments equal to the voxel 
resolution and performing a box-ray intersection test for all existing voxels in the 
twenty-seven neighbor slots in the voxel grid for each sample point, but in general this 
is not necessary because the bone is partially transparent and we are primarily 
concerned with rays that intersect reasonably thick layers of bone.  Points along the ray 



beyond the maximum extent of bone (which, for computational simplicity, can be 
represented by a primitive bounding volume) need not be tested.   
 
In reality, a structure should not be fully exposed; instead, there should remain a layer 
of bone thin enough such that the underlying structure can be seen (due to the partial 
transparency of the bone) but thick enough such that the drill does not touch the 
structure.  Thus, samples closer to the given point than some user-specified threshold 
distance are not considered in the bone collision tests.  See Figure 1A.   

 
Each vertex on a selected structure is tested to determine whether it is directly exposed.  
Since this depends on the viewpoint, it must be recalculated whenever the viewpoint 
changes.  In our simulator, the viewpoint can be repositioned by the user using the 
camera tool.  It is not good practice to attempt to identify the subtle visual cues needed 
to determine a structure's location while in the midst of moving the camera, so the 
visibility checks are only needed at the beginning and end of a camera movement.  
(Since bone is only removed and not replaced, exposure cannot decrease for a constant 
viewpoint, so the need for a check at the end of one movement is obviated by the check 
at the beginning of the next movement.)  
 
The run-time for the voxel collision detection is proportional to the product of the 
number of vertices, the voxel grid resolution, and the number of camera movements.  
Ray-mesh collision detection is also run once for each vertex on the structure of interest 
after each camera movement; each call could involve checks against up to m triangles 
(where m is the total number of triangles in all meshes in the simulation), but the 
bounding volume hierarchy usually reduces this closer to O(log m) operations.   
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Figure 1A. At left, a given point (v) on a vulnerable anatomic structure (curved tube) is tested for direct 
exposure by tracing a ray from it to the viewpoint (eye).  Points (A through G) at regular increments along 
the ray are tested for intersection with the bone voxels (light gray squares).  Points (A) less than some 
threshold distance (t) from the given point are ignored, since proper exposure allows for a thin layer of bone 
to remain.  (In fact, the trainee could be penalized for removing bone in this region, too close to the 
structure.)  Points (F and G) beyond the bounding volume (large dashed rectangle) of bone need not be 
checked.  Here points B, C, and D are checked and found not to intersect, but a collision is detected at Point 
E, so point v is not yet exposed.  Figure 1B. At right, a point (E) is considered directly exposed if the 
overlying bone is sufficiently thin, as shown in Figure 1A.  The position of another point (A) on the structure 
may then be safely inferred if the path distance along the surface (AB+BE) and "curvature" (the angle ABE 
along the surface through path midpoint B) are less than specified values. 

  



2.  Inferred Exposure 

Having directly exposed some points along a structure, a surgeon may be able to 
confidently infer the location of other nearby points along the structure, provided that 
the structure is relatively straight in the vicinity.  An expert may be able to establish a 
set of inferred points that includes all points of the structure within the surgical field by 
directly exposing only a small number of points in optimal locations; thus, the ratio of 
the sizes of the inferred and directly exposed sets, in addition to the absolute sizes of 
these sets, may be useful for determining a user's level of expertise. 
 
Given a set of directly exposed points, as determined by the algorithm described in the 
preceding section, we make use of Dijkstra's algorithm [5] to determine the set of 
points whose locations can be safely inferred.  The surface of the structure's mesh can 
be viewed as a graph (with the edges defined by the triangulation), and we attempt to 
find vertices for which there exists a path along the surface of sufficiently short length 
and sufficiently small curvature from a directly exposed point.  Distance between two 
points along the surface is a more meaningful measure of their proximity than absolute 
distance because many structures (such as nerves and blood vessels) may twist and turn 
unpredictably.  The mesh triangulation needs to be sufficiently fine and well-
conditioned (i.e., no sliver triangles) so that the distance between any two points along 
edges of the triangulation closely approximates the shortest possible distance along the 
surface (although extremely high accuracy of distances is not necessary for this metric).   
 
Dijkstra's algorithm is run once for each directly exposed vertex, which serves as the 
source.  The algorithm repeatedly selects the vertex from the priority queue with the 
smallest shortest path estimate, and considers all outgoing edges from this vertex.  For 
one such edge (v1 , v2), where v1 is the vertex just returned by the priority queue,  if v1's 
shortest-path estimate plus the distance between v1 and v2 is less than v2's current 
shortest-path estimate, the edge may be "relaxed".  Relaxing an edge involves adding v2 
to the queue and to the set of inferred points and updating its shortest-path estimate.  
However, the edge is not relaxed (and thus v2 is not added to the set of inferred points) 
if v2's new shortest-path estimate is greater than some user-specified distance threshold, 
or if its curvature relative to the source exceeds another specified threshold.  Curvature 
is calculated as the deviation from 1800 of the angle formed by the source, the midpoint 
along the path from the source to v2, and v2.  (The curvature is only calculated for paths 
longer than some minimum threshold, since the curvature of very short paths is heavily 
influenced by the triangulation topology.)  Thus, only vertices for which there exists a 
sufficiently short and straight path along the surface from a directly-exposed vertex are 
added to the set of inferred points.  See Figure 1B.  
 
The asymptotic running time of Dijkstra's algorithm is O(E log V), where E is the 
number of edges and V the number of vertices in the graph.  If, as is almost always the 
case with a mesh, E = O(V), (or, if the priority queue is implemented as a Fibonacci 
heap), this reduces to O(V log V).  Since edges and vertices beyond the distance and 
curvature thresholds are never touched, V can actually be much less than the total 
number of mesh vertices if only a small region has been directly exposed and the 
distance and/or curvature thresholds are tight.  This algorithm is called once for every 
directly exposed vertex after each camera movement. 



3.  View-Dependent Shading 

In order to mimic the partial transparency of bone that enables structures to be seen 
without removing all overlying bone, we shade bone voxels near structures with 
appropriate colors or texture maps. A straightforward way of implementing this effect 
is to pre-compute the distances of all bone voxels from the underlying structures and 
then to interpolate between the shading color and natural bone color for each voxel in 
proportion to its distance.  The distance between a voxel and a mesh is determined as 
the minimum distance between the voxel's (center) position and any triangle of the 
mesh.  The distance between a point and a triangle is calculated by projecting the point 
onto the plane of the triangle, as described by Jones [6].     
 
However, this has the effect of making the structure appear thicker all the way around.  
For example, in Figure 2A, if a viewer looks along the dotted line, he/she will think the 
dark structure (with gray shading) is directly along his/her line of sight, when in fact it 
is not.  This effect is unrealistic and misleading.   
 
Instead, a ray can be cast from the viewpoint through each voxel, as shown in Figure 
2B. If and only if this ray intersects the structure is the voxel shaded, with intensity 
inversely proportional to the distance along the ray between the collision point and the 
voxel.  As in Section 1, collision detection between this ray and the mesh is performed 
using an axis-aligned bounding box hierarchy.  Rather than trace a ray through every 
voxel in the entire array, only those with a distance from the mesh (pre-computed as 
described above) less than a user-specified shading radius threshold need be considered.  
As in Section 2, these calculations depend on the viewpoint, but the rays are recast only 
at the end of every camera movement, since this visual effect is too subtle to be of great 
concern while actually moving the camera. 
+ 
For each camera movement, ray-mesh collision detection is called once for each of m 
voxels, where m depends on the shading radius.  Again, the bounding volume hierarchy 
usually reduces the potential checks against up to n triangles (where n is the number of 
triangles in the mesh for which the bone is being shaded) for each call to close to O(log 
n) operations. 
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Figure 2A. At left, all voxels (squares) within a small radius of an underlying structure (black arc) are shaded.  
When the user looks along the ray shown, he/she sees shaded voxels, making it appear that the structure is 
along this line of sight, when in fact it is not.  Figure 2B. At right, rays are cast from the viewpoint (eye) 
through each voxel within a small radius of the structure, and only those for which this ray intersects the 
structure are shaded.  Thus, voxel A is shaded while voxel B is not. 



4. Discussion 

View-dependent shading has been incorporated into our interactive simulator, and an 
analysis of direct and inferred exposure has been added to our metrics console, which 
can replay runs of the simulator in real-time while providing visual and quantitative 
feedback, as shown in Figure 3A.  While the simulation replays in the left panel, 
regions of selected structures shown in a cut-away view in the right panel are shaded 
based on whether proper exposure has been achieved.  An example of shading the bone 
in the interactive simulator using a texture map is given in Figure 3B. 
 
We are beginning a user study in which we will attempt to establish construct validity 
for several of our metrics, including those discussed in this paper.  We intend to begin 
looking more closely at metrics related to force and velocity profiles, but some work 
remains for visibility-related metrics, including accounting for view obstruction by 
bone dust.  Most of our work on metrics thus far has been related to temporal bone 
surgery, but we believe that many of these ideas are fundamental throughout surgery 
and plan to extend them to other procedures.   

            
Figure 3A. At left, our metrics console, playing back a run of the simulator.  In the left panel, shading of the 
bone is visible as the sigmoid sinus is approached.  In the right panel, underlying structures are shown.  The 
directly exposed portion of the sigmoid is shaded in one color, while the portion that can be safely inferred 
from the exposed region is shaded in another color.  Figure 3B. At right, the back of the temporal bone, 
shaded in the proximity of the sigmoid sinus and of the dura, using a texture map applied to the voxels.  
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