
1

Stability of Haptic Rendering: Discretization,
Quantization, Time-Delay and Coulomb Effects

Nicola Diolaiti Student, IEEE, Günter NiemeyerMember, IEEE,
Federico BarbagliMember, IEEE, J. Kenneth Salisbury, Jr.

Abstract— Rendering stiff virtual objects remains a core chal-
lenge in the field of haptics. A study of this problem is presented,
which relates the maximum achievable object stiffness to the
elements of the control loop. In particular, we examine how the
sampling rate, quantization, computational delay, and amplifier
dynamics interact with the inertia, natural viscous, and Coulomb
damping of the haptic device. Nonlinear effects create distinct
stability regions and many common devices operate stably, yet in
violation of passivity criteria. An energy based approach provides
theoretical insights, supported by simulations, experimental data,
and a describing function analysis. The presented results subsume
previously known stability conditions.

Index Terms— Haptic Interfaces, Quantization, Coulomb Fric-
tion, Amplifier Dynamics, Passivity, Virtual Objects

I. I NTRODUCTION

T HE field of haptics aims to provide the user with a sense
of touch while interacting with simulated objects in a

virtual world. It uses force feedback to render the kinesthetic
perception of contact with virtual objects, striving to reproduce
realistic sensations.

This is commonly achieved by means of an electro-
mechanical haptic device and associated computer interface
to connect the user to the artificial world, as illustrated in
Fig. 1. Impedance devices [3] apply forces computed by a
virtual stiffness, which is raised as high as possible to render
hard contacts. These devices exhibit low intrinsic friction and
inertia to minimize dynamic distortion of the user’s perception
[4] and may trade off the number of actuated and sensed
degrees of freedom (DOF) to optimize performance [5].

Besides the characteristics of the mechanical device, the
achievable stiffness and performance depends on the computer
interface. Usually implemented as a digital control loop, this
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Fig. 1. A single degree of freedom of a haptic interface rendering a virtual
stiffness

entails time discretization, quantization of both position and
force information, computational delays, and current amplifi-
cation with limited bandwidth. Clearly these “non-idealities”
limit the maximum stable feedback gain that can be reached.
Implementation of stiff virtual objects has proven to be partic-
ularly demanding for common low inertia and friction devices.
Yet rendering stiff objects is a basic necessity of haptic systems
and considerable research effort has been invested to analyze
control strategies and increase performance.

Energy based approaches have been used in [6]–[8] to view
some of these limitations and provide stability conditions;
passivity is sufficient for stability, if the operator is described
by unknown passive elements [9]. The time delay introduced
by the zero-order hold generates and injects energy into the
system (energy leaks according to the nomenclature used in
[8]). This excess energy may cause instability if not dissipated
by the haptic device’s intrinsic friction or through control.
For example, [10] proposes to predict the position of the
device at the next time step to reduce energy leaks, while [11]
dynamically estimates the energy generation and uses dissi-
pation through a digital damper element. A port-Hamiltonian
approach is followed in [12] to track and dissipate energy
excess. Yet these control strategies do not explicitly account
for uncertainties related to position quantization or limited
actuation bandwidth. Physical friction remains a key element
to dissipate energy and preserve system stability. This concept
has been refined in [13] to consider computational delay, in
[14] to include Coulomb friction and variable stiffness, and in
[15] for quantization.

Our work analyzes how the combined effects of non-
idealities limit the achievable performances, measured asthe
largest stable feedback gain. It shows several distinct stability
regions. The haptic interface model used throughout this
paper accounts for the hard nonlinearities of quantization,
discretization, and delays in the controller, while considering
viscous and Coulomb friction in the mechanism. In particular
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Coulomb friction plays an important role in force-feedback
mechanisms [16] and haptic devices.

The results are supported by a rigorous theoretical energy
analysis and an approximate describing function analysis.
They are validated through simulation and experiment and are
consistent with the performance of a variety of commercial
haptic devices. We hope to facilitate both control and device
designers alike to create effective haptic systems.

The paper is organized as follows: in Sec. II we detail the
problem and define our approach. We give and discuss the
main results, including stability criteria, in Sec. III. They are
validated through simulation in Sec. IV and experimentallyin
Sec. V using a single degree of freedom device. The analytical
proof of energy generation and dissipation is presented in
Sec. VI, followed by the describing function analysis in
Sec. VII. We conclude in Sec. VIII with some brief final
remarks.

II. PROBLEM STATEMENT

A. System Description

It is a common goal in the field of haptics to render
contact with a seemingly rigid virtual wall. This is generally
accomplished by simulating a one-sided stiff spring force
that is displayed to the user through the haptic device while
the virtual contact is sustained. Our developments study the
maximum achievable wall stiffness and its relation to the
computer interface and device parameters. As such, we focus
on a single degree of freedom depicted in Fig. 1. The haptic
device consists of a physical inertiam and has intrinsic
friction, attributed to both viscous componentsb and dynamic
Coulomb componentsc. Its positionx and velocityẋ result
from the forceFH applied by the human operator and the force
FA exerted by the amplifier to simulate the virtual stiffnessK.

A computer interface relates the continuous real device to
the discrete virtual world. As many researchers have recog-
nized, the elements constituting this interface can introduce
oscillatory or unstable behaviors. Shown in Fig. 2, we examine
quantization of the signal, discrete sampling at time intervalsT
and associated zero-order hold, possible delays in computation
of the virtual environment, and amplifier dynamics. Quantiza-
tion of the command forceFC is introduced by the position
sensor and the D/A converter. For high stiffnesses a single
encoder tick results in a large force command corresponding
to several D/A steps; in the following we shall thus refer to
the encoder resolution as the main contribution to quantization
effects.

The haptic device is modeled as a point mass and described
by the differential equation:

mẍ(t) + bẋ(t) + c sgn(ẋ(t)) = FH(t) + FA(t) (1)

Meanwhile the virtual spring force is governed by:

FV (hT ) = −K∆

(⌊

x(hT )

∆

⌋

+
1

2

)

∀h ∈ N (2)

where T is the sampling time,h denotes the discrete time
variable, ∆ is the combined resolution of the encoder and
the D/A converter, whileb.c refers to the integer part. Note
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Fig. 2. Block diagram of the haptic system, connecting the human user with
the virtual spring

the spring is assumed to be bidirectional, which is equivalent
to the situation of a steady state position inside the one-sided
virtual wall. Without bidirectional spring forces or a biasforce,
contact will necessarily be broken and no further control forces
will be applied. We place the originx = 0 at the encoder
boundary nearest the steady state position. Furthermore, we
assume a residual bias of 1/2K∆ in (2), so that the spring
force is symmetric about the origin but finds no steady state
value as:

|FV (hT )| ≥ 1

2
K∆ (3)

This poses the most challenging boundary conditions for
the controller. The zero-order hold maintains this desired
controller force during each servo cycle:

FC(t) = FV (hT ) ∀t ∈ [hT ; (h + 1)T [ , h ∈ N (4)

Finally, we consider the destabilizing lag caused by the
amplifier circuitry without the benefit of the high frequency
attenuation; below its cutoff frequencyωA, the amplifier
behavior very closely matches the response of a simple delay:

TA =
2δA

ωA

(5)

whereδA is the amplifier’s damping ratio. We also allow for
a computational delayTV , typically equal to or below one
sample period. This arises, for example, when complex virtual
environments are simulated and necessitate collision detection
algorithms between objects. Both delays together affect the
force applied to the haptic device:

FA(t) = FC(t − TD) , TD = TA + TV ∀t > 0 (6)

B. Dimensionless Parameterization

To reduce the number of parameters, we perform a dimen-
sional analysis. In particular, we measure position relative to
a single encoder quantum∆, time relative to the sampling
interval T , and force relative to the smallest force stepK∆
matching one encoder tick. Velocity is expressed relative
to one encoder quantum per sampling interval∆/T . The
resulting dimensionless signals as well as device and interface
parameters are summarized in Table I.

The differential equation (1) may be written as:

µξ̈(τ) + βξ̇(τ) + σ sgn
(

ξ̇(τ)
)

= ϕH(τ) + ϕA(τ) (7)
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Signal / Parameter Dimensionless Value

Spring stiffness K

Encoder resolution ∆

Sampling interval T

Time t τ :=
t

T

Position x ξ :=
x

∆

Velocity ẋ ξ̇(τ) =
dξ(τ)

dτ
=

ẋT

∆

Force F ϕ :=
F

K∆

Combined loop delay TD τD :=
TD

T

Mass m µ :=
m

KT 2

Viscous friction b β :=
b

KT

Coulomb friction c σ :=
c

K∆

TABLE I

DIMENSIONLESS SIGNALS AND PARAMETERS

where the dimensionless forces are:

ϕC(τ) = −bξ(h)c − 1

2
∀τ ∈ [h;h + 1[, ∀h ∈ N (8)

ϕA(τ) = ϕC(τ − τD) (9)

C. Stability Approach

Haptic systems are typically analyzed in the framework
of passivity. Knowing that the feedback interconnection of
any two passive systems is stable [17] and that most real
environments are passive, it is a common goal to make the
haptic system appear passive to the user. We follow this
tradition but we make two important notes. First, a human
operator is not truly passive and hence the stability of a haptic
interaction can not be immediately assured, even if the device
appears passive. Fortunately common experience shows that
humans are skilled at interacting with passive objects and do
so in a stable fashion [9]. Second, passivity of the haptic
interface is not strictly necessary for stability. As we will see,
the system may violate passivity requirements but result ina
stable operation. As such we carry out a Lyapunov analysis
based on the energy storage function.

More specifically, a human operator will actively move at
frequencies below 10 Hz and may generate energy. But in this
low frequency band the inertia and friction of the mechanism
together with the simple virtual spring appear passive and
interactions are stable. Effects of computer interface approxi-
mations and lag are negligible.

In contrast, at higher frequencies the artificial stiffness
can cause substantial problems. Instabilities usually occur at
several hundred Hertz. Here the user imposes on the system
an impedance consisting of stiffness, damping, and possibly
added mass. And while the impedance can change with the

user’s grip, it is not arbitrary; it necessarily contains relatively
low stiffness and high damping. In the following, we consider
the worst case stability scenario with minimal damping, in
which the user is not or barely touching the haptic device,
thus adding negligible impedance to the system. The additional
damping of a stronger user grip would reinforce the natural
damping of the device. As we shall see in Sec. III-B, such
an effect enhances stability and is consistent with practical
experience: a heavy grip stabilizes the interaction while alight
grip is the most challenging.

Therefore we focus on the Lyapunov analysis of internal
haptic loop connecting the virtual spring to the physical device.
Using an energetic analysis, we confirm that for appropriate
parameters ranges, the energy stored in the device and in the
virtual spring is a suitable Lyapunov function [18].

III. M AIN RESULTS

In presenting our results, we first state the main energy
dissipation criterion and show the distinct stability regions
that span the parameter space. This summarizes results of
an energy-based and a describing function analysis and is
also supported by simulation and experimental work. We give
the criterion in the case of no delay (τD = 0), interpret
its implications, and then provide the extension to delayed
feedback.

Before proceeding, we recognize the need of a sampled data
system to avoid signal aliasing. The sampling frequencyωs

must exceed twice the natural frequencyωn:

ωs =
2π

T
� 2ωn = 2

√

K

m
= 2

√

1

µT 2
(10)

This places a lower bound on the dimensionless device inertia:

µ � 1

π2
(11)

irrespective of the system behavior. In the following we
can therefore focus on the(β, σ) parameter plane, relating
the dimensionless viscous and Coulomb friction to stability
properties.

A. Dissipation Criterion for Zero Delay (τD=0)

A haptic control system depicted in Fig. 2 is proven to be
energy dissipating if:

(

β − 1

2

)

+
σ − 1

2
ξ̇max

≥ 0 and σ ≥ 1

2
(12)

where a positive maximum velocitẏξmax exists such that:
∣

∣

∣
ξ̇(t)

∣

∣

∣
≤ ξ̇max ∀t ≥ 0 (13)

If the system experiences a stable interaction of the device
with the virtual stiffness, the maximum velocity and energy
occur at the moment of initial impact, hence:

ξ̇max = ξ̇0 with ξ0 = 0 (14)

Subsequent velocities remain bounded as the energy is dissi-
pated. If a maximum velocitẏξmax does not exist, the kinetic
energy is also unbounded and the system is clearly not energy
dissipating.
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B. Stability Regions

The nonlinearities of signal quantization and Coulomb fric-
tion cause five distinct stability regions to exist within the
(β, σ) parameter plane shown in Fig. 3. While the dissipation
criterion (12) proves stability of regions A and E, operation
in B, C, or D may generate energy. We rely on the describing
function analysis, simulations, and experiments to investigate
and further classify the behavior in these sections.

A β > 1/2, σ > 1/2: This is the only region where (12)
is satisfied regardless of the maximum velocityξ̇max. A
system operating in this region will be globally stable.
Moreover, it is the only region in which the system is
passive [17], [18] with Coulomb and viscous friction
together dissipating any spurious energy generation due
to quantization and discretization.

B β > 1/2, σ < 1/2: This region gives rise to small
amplitude stable self-sustained oscillations (limit cycles).
Analyses and tests confirm the amplitude of these limit
cycles remains below a single encoder tick. Without
significant Coulomb friction, the viscous damping alone
is unable to suppress energy generation at these low
speeds. It does, however, prevent faster motions and
hence stabilizes the cycle.

C β < 1/2, σ < 1/2: Systems operating in this region
may generate energy at all times. The describing function
analysis confirms that the system is unstable and, at least
under a light touch, the haptic user interaction will also
be unstable.

D β<1/2, 1/2<σ<1/2+ξ̇max(1/2−β): Operation below
the critical line associated to (12) may again generate
energy and causes instability. However, the location of
the critical line is dependent oṅξmax, that corresponds
to the initial velocity (14). The instability is therefore
dependent on initial conditions and marked as local.

E β<1/2, σ>1/2+ξ̇max(1/2−β): If the device velocity re-
mains limited below the thresholḋξmax, Coulomb friction
is efficient in dissipating energy even ifβ<1/2. Energy
in this region is monotonically decreasing. Analogously
to region D, the boundary depends on initial conditions
through ξ̇max and stability is again local.

We find that most haptic devices rendering their maximum
stable stiffness operate in region E. Their dissipation is dom-
inated entirely by Coulomb friction, which works well at low
speeds. Should these systems experience a velocity faster than
the maximum velocity allowed by device friction and control

Device m b c ∆ T K µ β σ
[Kg] [Ns/m] [N] [µm] [ms] [N/m]

Delta 0.250 0.01 0.883 30 0.33 14500 155.2 0.002 2.03

Freedom 6 0.250 0.01 0.06 20 1 2400 104.2 0.025 1.25

Impulse Engine 0.032 0.02 0.024 31.4 0.2 800 1007.8 0.13 0.97

MIT Toolhandle 0.119 0.001 0.034 20.1 1 3125 38.19 0.0003 0.54

Omega 0.220 0.01 0.147 10 0.33 14500 136.6 0.002 1.01

Phantom 1.0 0.072 0.005 0.038 29.1 1 1015 70.55 0.004 1.29

Human Operator 0.150 4.8 600

TABLE II

PARAMETERS OF COMMON DEVICES

σ

β

1

2

1

2

ξ̇max+1

2

A Globally

Stable (Passive)

B Limit

Cycles

C Globally

Unstable

D Loc.

Unstable

E Locally

Stable

−ξ̇max

Fig. 3. Regions of the(β, σ) plane: the term unstable implies the system
may continuously generate energy in the corresponding regions.

loop parameters:

ξ̇max =
σ − 1/2

1/2 − β
⇔ ẋmax =

2c − K∆

KT − 2b
(15)

they would become unstable. At such high velocities, Coulomb
friction provides little effective dissipation compared to viscos-
ity. As users can in practice achieve only limited velocities,
they will not distinguish operations in regions A and E, where
the total energy monotonically decreases.

Table II summarizes the relevant data, expressed in carte-
sian space, for a common set of commercially available
haptic devices. The dimensionless parameters clearly show
operation in the locally stable region E, also depicted in
Fig. 4. We investigated the Omega and Delta from Force
Dimension, the Impulse Engine 2000 force-feedback joystick
from Immersion, the MIT Toolhandle [19], the Phantom 1.0
[4] from Sensable, and the MPB Freedom6. Manufacturer
specifications and identification procedures analogous to [20]
provide estimates of mass and friction coefficients. Also given
are the encoder resolution, typical sampling intervals, and

1.5

2 Delta

PHANToM 1.0

Freedom 6

0

0.5

1

Omega

Impulse Engine

0.5 1 1.5 2

MIT Toolhandle

σ

β

K ↑

T ↑

∆ ↑

Fig. 4. Effects of wall stiffnessK, sampling timeT and
encoder resolution∆ on the(β, σ) plane.
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maximum achievable stiffness that can be rendered oscillation-
free without additional human stabilization. Note that except
for the Impulse Engine, the viscous friction coefficients could
only be bounded due to the resolution of the measurement
instruments and estimation techniques.

Finally, for comparison only, we show the lumped parame-
ters of a human operator in a configuration typical of haptic
interaction [21]. Note especially the high viscous damping.
As the human stiffness and damping apply in parallel with
the device parameters, the effective viscous coefficient is
substantially raised by appropriate human touch. I.e. users may
shift the system from region E into the passive region A. This
reiterates and supports our discussion of Sect. II-C and our
choice to focus the stability analysis on the worst-case scenario
with no user dissipation.

C. Interpretation

The stability regions may be seen as generalizing Colgate’s
inequality (β>1/2 in the dimensionless formulation) [7] to
include dynamic Coulomb friction and sensor quantization.
If the system is sampled without quantization, the dissipation
criterion (12) relaxes to:
(

β − 1

2

)

+
σ

ξ̇max

≥ 0 ⇔
(

b − KT

2

)

+
c

ẋmax

≥ 0

(16)
and regions B and C are removed from the parameter plane.
We find Coulomb friction assisting viscous damping especially
for small velocities, consistent with physical intuition.

We also see qualitative distinctions between the two dissi-
pation effects. From (12), the viscous friction:

β ≥ 1

2
⇔ b ≥ KT

2
(17)

should balance the stiffness and effective delay due to the
sampling and zero-order hold; the phase lag of the zero-
order hold is compensated by the phase lead of the viscosity.
Coulomb friction:

σ ≥ 1

2
⇔ c ≥ K∆

2
(18)

must be able to hold the device against the step force changes
due to quantization to avoid limit cycles. Both effects together
support passive operation; one effect by itself can only create
a locally stable system or stable limit cycles.

For a particular device, with fixed massm, viscosityb, and
Coulomb frictionc, we may influence stability by selection of
K, T , and ∆. Increasing stiffnessK affects bothβ and σ;
the operation point moves in a straight line toward the origin
and hence toward instability, as shown in Fig. 4. Consistent
with intuition, larger sampling timesT and encoder steps∆
are also destabilizing, loweringβ or σ respectively.

D. Extension to Delayed Feedback

Most practical systems experience some amplifier and com-
putational delay in addition to the effective delay of the zero-
order hold. A haptic control system with delayτD is proven
to be energy dissipating if:

σ − 1

2
− ξ̈max

(

τ2
D + τD

)

+ ξ̇max

(

β − 1

2
− τD

)

≥ 0 (19)

σ

β

1

2

1

2

1

2
+ ξ̇max

(

1

2
+ τD

)

+

+ξ̈max

(

τD + τ2
D

)

F1 Locally

Stable

B Limit

Cycles

C Globally

Unstable

D Loc.

Unstable

E Locally

Stable

F2 Stable (Energy not-Lyapunov)

−ξ̇max

1

2
+ τD

1

2
+ ξ̈max(τ

2
D + τD)

Fig. 5. Regions of the(β, σ) plane for delayed feedback: the term unstable
again implies the system may continuously generate energy.

where a positive maximum velocitẏξmax and a positive
maximum acceleration̈ξmax exist such that:

∣

∣

∣
ξ̇(t)

∣

∣

∣
≤ ξ̇max

∣

∣

∣
ξ̈(t)

∣

∣

∣
≤ ξ̈max ∀t ≥ 0 (20)

The delay raises the values ofβ andσ required for stable
operation. It also splits the former passive region A into two
sections F1 and F2. In F2 the system may briefly generate
energy. However, unlike its neighbor B, extended motions in
F2 dissipate energy and the system remains stable. This is
confirmed by the describing function analysis and is labeled
as stable, but remarking that the total energy here is not a
Lyapunov function.

In region F1 energy dissipation is continual and the system
is thus stable, with the energy monotonically decreasing. To
label this area as passive, we would have to postulate a
global maximum acceleration valid for all signals or initial
conditions. In practice this may occur with amplifier saturation
but falls beyond the assumptions we wish to make here.

Finally, we note these results are consistent with [14]. Under
the assumptions of̈ξmax = σ/(βτD), τD = 1, and without
quantization, Mahvash and Hayward determine the stability
criterion β ≥ 2.

IV. SIMULATIONS

Before providing an analytic proof of the mappings (12),
(19) we confirm the stability regions illustrated in Fig. 3 and 5
through simulations.

The dimensionless model (7) has been simulated assuming
no initial deflectionξ0 = 0, different initial velocitiesξ̇0, and
a null input from the human operator.

A grid of 714 different values of(β, σ) has been considered.
The state vector(ξ, ξ̇) has been evaluated atτ = 5 × 104,
corresponding tot = 50 sec. for a sampling timeT = 1 ms, to
determine the stability of each operating point. Zero crossing
detection allowed increased resolution of the numerical solver
and accurate simulation of quantization and Coulomb friction.
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Fig. 6. Stability regions on the(β, σ) plane forτD = 0 andµ = 100: dark, medium, light and white areas represent growing, persistent, non-monotonically
decaying and monotonically vanishing energy and oscillations.
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Fig. 7. Stability regions on the(β, σ) plane forτD = 1.25 andµ = 100.

High numerical resolution about the equilibrium allowed also
discrimination of oscillating and converging trajectories.

Results obtained withµ = 100 and four different initial
velocities, for a system without time delays, are shown in
Fig. 6. The dark areas represent growing oscillations, medium
areas denote persistent oscillations, light and white areas show
vanishing oscillations with non monotonically and monotoni-
cally decaying energy respectively.

We see a good correspondence between the prediction and
simulation outcomes with strong agreement with the stability
regions of Fig. 3. We note that (12) stems from a worst case
analysis, so that the actual stability regions are slightlylarger
than predicted.

The same simulations have been repeated with a time delay
τD = 1.25 and the results are shown in Fig. 7. We again find
good correspondence to the regions of Fig. 5 and in particular
notice the shifted borders due to the delay.

V. EXPERIMENTAL RESULTS

Experimental validation of the analytical results has been
carried out by means of a Maxon RE35 motor equipped
with an encoder having 8192 counts per revolution. As a
rotational device, positions and forces in (1) correspond to
angles and torques. The current amplifier, a Copley model
403, was commanded via a 14 bit D/A interface from the
RTAI-Linux control loop. The amplifier was configured to
have a bandwidth of3 KHz with servo rates varying from
100 Hz to 1 KHz. Coulomb friction was estimated atc =
2 × 10−3 Nm, substantially higher that viscous frictionb =
9×10−6 Nm/rad sec; the motor inertia wasm = 6.28×10−6

Kg m2. Variations ofβ and σ were obtained by artificially
reducing the servo rate and encoder resolution.

Because of the simplicity of the virtual environment, the
computational delay was negligible. Similarly, due to the
configuration, the time delay related to the amplifier dynamics
was also negligible. We therefore compare the experiments
against criterion (12) and Fig. 3.

In contrast to the simulations, an initial deflectionξ0 with
no motion (̇ξ0 = 0) was used to create repeatable conditions.
An equivalent maximum velocitẏξmax to separate regions of
the (β, σ) plane, was computed as if all potential energy was
transferred to kinetic energy.

Fig. 8 shows the outcomes obtained in different regions
of the (β, σ) plane. The left portion of each graph shows
the operating point and the critical line associated with the
initial condition, while the right side shows the temporal
diagram of the angular displacement. In the right diagram,
the dashed horizontal lines correspond to±1 encoder tick.
In Fig. 8(a), we evaluated a point located in the globally
stable region and, despite the high initial velocity seen by
the steep slope of the critical line, the position convergesto
the origin. By artificially lowering the encoder resolution, the
operating point is moved to region B. In Fig. 8(b) we see,
as predicted, persistent oscillations below a single encoder
tick. Finally, by changing the servo rate, operations in the
locally stable and unstable regions D-E were tested. Variation
in the initial conditions changes the critical boundary line to
below (Fig. 8(c)) and above (Fig. 8(d)) the operating point.As
predicted, with increased initial energy in the virtual spring,
the system becomes unstable.
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Fig. 8. Characteristic points and critical line representing initial velocity on the(β, σ) plane (left diagrams); the resulting behaviorx(t) is plotted on the
right diagram.

VI. ENERGETICANALYSIS OF DIGITAL SPRINGS

From an informal point of view, the system of Fig. 2
comprising the device, the computer interface and the virtual
environment, is passive if only the stored energy can be
extracted by the user.

However, previous work [6]–[8] showed energy generation
for a discrete time, non-quantized virtual spring due to the
time delays introduced by the discrete time implementation.

The causes of non-passive behaviors can be easily analyzed
by means of the displacement/force diagrams shown in Fig. 9.
We compare a physical springϕP , a quantizedbut time
continuous springϕQ, a discretizedbut non-quantized spring
ϕZ , and the digital (i.e. quantized and discretized) counterpart
ϕC seen in the haptic system (8):

ϕP (τ) = −ξ(τ) (21)

ϕQ(τ) = −bξ(τ)c − 1

2
(22)

ϕZ(τ) = −ξ(h) ∀τ ∈ [h;h + 1[ (23)

ϕC(τ) = −bξ(h)c − 1

2
∀τ ∈ [h;h + 1[ (24)

The compression (ξ̇ > 0) and the restitution (̇ξ < 0) phases
of a linear physical spring generate exactly overlapping curves
(dashed line in Fig. 9(a)), energy supplied during compression

0

-3.5

-2.5

-1.5

-0.5

-4.5

-5.5

1 2 3 4 5

restitution

compression

ϕC

ϕP

ϕQ

ϕZ

ξ

ϕ

(a)

0

-3.5

-2.5

-1.5

-0.5

-4.5

-5.5
1 2 3 4 5

restitution

compression

ϕC

ϕA

ξ

ϕ

(b)

Fig. 9. Comparison of force/displacement diagrams. Left: physical (dashed),
quantized (solid), time discrete (square filling) and digital (gray filled) spring.
Right: Digital (gray filling) and digital delayed spring (square filling).

is entirely extracted during restitution. In other words, energy
is not dissipated nor generated. The corresponding diagramfor
ϕQ is given by the solid line of Fig. 9(a). Though no longer
smooth, the compression and restitution forces still matchand
again no energy is generated nor dissipated. Quantization is
purely position dependent and by itself is not a source of
energy leaks.
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On the other hand, time discretization causes hysteresis
loops to arise: the net result of the compression and the
restitution phase is work that the haptic display does on
the human operator and corresponds to generated energy.
The square filled and the gray filled diagrams of Fig. 9(a),
represent the behavior ofϕZ and of its digital counterpart
ϕC respectively. Comparing the generated energies, we note
that the latter can be either larger (see Fig. 9(a) atξ ' 1) or
smaller (seeξ ' 2) than the former. The loss of information
related to the quantization process affects the overall energy
balance. A worst case analysis is required to estimate the
maximum amount of additional energy generated because of
the combined effect of quantization and sampling.

Finally the digital springϕC is compared to its delayed
version ϕA (9). When τD > 0 a larger amount of energy
is likely to be generated. However, situations may arise (see
Fig. 9(b) atξ ' 5) when the delayed springϕA generates less
energy. Again, a worst case analysis is necessary to account
for the delayτD.

In order to formalize these behaviors, (22) and (7) can be
used to obtain:

ϕH(τ)=
[

µξ̈(τ)−ϕQ(τ)
]

+
[

βξ̇(τ)+σ sgn
(

ξ̇(τ)
)]

+

−
[

ϕA(τ) − ϕQ(τ)
]

(25)

With ϕH(τ)ξ̇(τ) describing the instantaneous dimensionless
power delivered by the operator to the haptic system, the
energy exchange during a generic time interval[τ0, τ1] is:
∫ τ1

τ0

ϕH(τ)ξ̇(τ)dτ =HT (τ1)−HT (τ0)+Ed(τ0, τ1)−Eg(τ0, τ1)

(26)
where the following definitions have been used:

HT (τ1)−HT (τ0) :=

∫ τ1

τ0

[

µξ̈(τ) − ϕQ(τ)
]

ξ̇(τ)dτ (27)

Ed(τ0, τ1) :=

∫ τ1

τ0

[

βξ̇(τ)+σ sgn
(

ξ̇(τ)
)]

ξ̇(τ)dτ (28)

Eg(τ0, τ1) :=

∫ τ1

τ0

[ϕA(τ) − ϕQ(τ)] ξ̇(τ)dτ (29)

HereHT (τ) = HT (ξ(τ), ξ̇(τ)) is a positive definite function
representing the energy stored by the haptic interface,Ed

represents the energy dissipated because of physical friction
while Eg is the energy generated by the “non-idealities” in
the control loop.

By recalling the notion of dissipativity [17], [18], system
(7) connectingϕH to ξ̇ is passive if:

Ed(τ0, τ1) ≥ Eg(τ0, τ1) ∀τ1 ≥ τ0 (30)

for any initial conditions and user inputs. Then physical
friction overcomes any spurious energy generation. Following
arguments of Sec. II-C, we focus on the stability of the haptic
system without user inputs. If the system is passive,HT

always monotonically vanishes and can serve as a Lyapunov
function to verify global stability. In this setting we further
recognize that, depending on system parameters, (30) may

hold only for a limited set of initial conditions. This behavior
is characteristic of local stability.

In the following, the analytic expression ofHT will be
computed and (30) will be investigated considering at first
the non-delayed caseτD =0 and then generalizing the result
to τD >0.

A. Storage function of a quantized spring

The total energyHT (ξ, ξ̇) of the haptic display is given
by the sum of the kinetic energy of the deviceHk = 1

2
µξ̇2

and of the pseudo-elastic potential energyHe(ξ) stored by the
quantized, time-continuous springϕQ:

He(ξ) = −
∫

ϕQ(τ)ξ̇(τ)dτ = −
∫

ϕQ(ξ)dξ (31)

To computeHe(ξ), we define the quantization error as:

ρ = ξ − bξc 0 ≤ ρ < 1 (32)

which is a function exclusively of the positionξ. Its integral
is given by:

∫ ξ

0

ρ(χ)dχ =
1

2
bξc +

1

2
ρ2(ξ) (33)

From (22), the potential energy may be computed as:

He(ξ) =

∫ ξ

0

(

χ − ρ(χ) +
1

2

)

dχ =
1

2
ξ2 +

1

2

(

ρ(ξ)− ρ2(ξ)
)

(34)
where the term depending onρ(ξ) is always positive because
ρ ∈ [0; 1[. Finally HT (ξ, ξ̇) is given by:

HT (ξ, ξ̇) =
1

2
µξ̇2 +

1

2
ξ2 +

1

2

(

ρ(ξ) − ρ2(ξ)
)

(35)

B. Energy Dissipation

We consider viscous and dynamic Coulomb friction, repre-
sented by the dimensionless parametersβ andσ, and provide
a lower bound for their energy dissipation. Coulomb friction
is most effective at low velocity, while viscosity dominates
at high speed. We ignore any additional frictional phenomena
that would further increase the dissipation.

By recalling (28), the dissipated energy in the time interval
τ ∈ [τ0; τ1[ is expressed by:

Ed(τ0, τ1) =

∫ τ1

τ0

βξ̇2(τ)dτ +

∫ τ1

τ0

σ
∣

∣

∣
ξ̇(τ)

∣

∣

∣
dτ

= Eβ(τ0, τ1) + Eσ(τ0, τ1)

(36)

A lower bound for Eβ , representing dissipation due to
viscous friction, can be obtained from the Cauchy-Schwarz
inequality:

(
∫ τ1

τ0

ξ̇2(τ)dτ

)
1

2

(
∫ τ1

τ0

12dτ

)
1

2

≥
∣

∣

∣

∣

∫ τ1

τ0

1ξ̇(τ)dτ

∣

∣

∣

∣

(37)

which leads to:

Eβ(τ0, τ1) ≥ β

(

ξ(τ1) − ξ(τ0)
)2

τ1 − τ0

(38)
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The triangle inequality may be used to bound the dissipation
Eσ due to the dynamic Coulomb friction:

∫ τ1

τ0

∣

∣

∣
ξ̇(τ)

∣

∣

∣
dτ ≥

∣

∣

∣

∣

∫ τ1

τ0

ξ̇(τ)dτ

∣

∣

∣

∣

=
∣

∣

∣
ξ(τ1) − ξ(τ0)

∣

∣

∣
(39)

Thus the total dissipated energyEd is lower-bounded by:

Ed(τ0, τ1) ≥ β

(

ξ(τ1) − ξ(τ0)
)2

τ1 − τ0

+ σ
∣

∣

∣
ξ(τ1) − ξ(τ0)

∣

∣

∣
(40)

In other words, friction losses are minimized when the device
moves fromξ(τ0) to ξ(τ1) with constant velocity.

C. Energy Generation and Balance for τD = 0

In parallel to Sec. III, we first analyze energy generation in
the caseτD = 0. In this situation we haveϕA(t)=ϕC(t) and
Eg in the time intervalτ ∈ [τ0; τ1[ becomes:

Eg(τ0, τ1) =

∫ τ1

τ0

[ϕC(τ) − ϕQ(τ)] ξ̇(τ)dτ (41)

To simplify the analysis, we place the initial timeτ0 = h at the
beginning of a sampling interval. The dissipation inequality
(30) must hold for any timeτ1 ≥ τ0, which can span
multiple sampling periods. This is assured if energy generation
is balanced by dissipation during each sampling period or
fraction thereof. And so we examine the generation between
h and τ1 ∈ [h;h + 1[, whereϕC(τ) is constant. Using (22),
(24) and (32) we have:

Eg(h, τ1)=−
∫ τ1

h

(

bξ(h)c − bξ(τ)c
)

ξ̇(τ)dτ

=

∫ τ1

h

(

[

ξ(τ)−ξ(h)
]

+
[

ρ(h)−ρ(τ)
]

)

ξ̇(τ)dτ =

= Egz(h, τ1) + Egq(h, τ1)
(42)

Egz and Egq are the contributions given by discretization
and by the combined effect of quantization and discretization
respectively. Note that for notational simplicityρ(τ) stands for
ρ(ξ(τ)).

If the device moves (ξ(τ1) 6= ξ(h)), the zero-order hold
always injects energy into the system:

Egz(h, τ1) =

∫ τ1

h

[

ξ(τ)−ξ(h)
]

ξ̇(τ)dτ =
1

2
(ξ(τ1) − ξ(h))

2

(43)
The quantization errorρ is a purely positional function,
without explicit time dependence. From (32) we see:

Egq(h, τ1) =
(

ρ(h) − 1

2

)

(

bξ(τ1)c − bξ(h)c
)

+

− 1

2

(

ρ(τ1) − ρ(h)
)2

(44)

which, according to previous discussion, can be either positive
or negative. Sinceρ and bξc are independent quantities, it is
possible to maximizeEgq with respect toρ(h) andρ(τ1):

Egq(h, τ1) ≤
1

2

∣

∣

∣
bξ(τ1)c − bξ(h)c

∣

∣

∣
(45)

This maximum is reached, depending whether the measured
displacementbξ(τ1)c − bξ(h)c is positive or negative, when
ρ(h) = ρ(τ1) = 0 or ρ(h) = ρ(τ1) = 1. It is immediate to
verify that in both cases, (45) simplifies to:

Egq(h, τ1) ≤
1

2

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(46)

The energy generated during the motion fromξ(h) to ξ(τ1)
is finally at most:

Eg(h, τ1) ≤
1

2

(

ξ(τ1) − ξ(h)
)2

+
1

2

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(47)

By comparing this upper bound with the lower bound (40) for
the energy dissipation evaluated forτ0 = h, we can state that
the dissipation inequality (30) holds if:

β

(

ξ(τ1) − ξ(h)
)2

τ1 − h
+ σ

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
≥

1

2

(

ξ(τ1) − ξ(h)
)2

+
1

2

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
(48)

for every τ1 ∈ [h;h + 1[ and for everyh ∈ N. In the event
that ξ(τ1) = ξ(h), (48) is trivially satisfied as an equality. In
other cases we can divide by|ξ(τ1) − ξ(h)|. Moreover, since
the velocity is a continuous function, the mean value theorem
holds:

∣

∣

∣
ξ(τ1) − ξ(h)

∣

∣

∣
= (τ1 − h)

∣

∣

∣
ξ̇(τ)

∣

∣

∣
τ ∈ [h; τ1[ (49)

and (48) can be rewritten as:

|ξ̇(τ)|
(

β − τ1 − h

2

)

+
(

σ − 1

2

)

≥ 0 (50)

Finally we note that(τ1 − h) ∈ [0; 1[ and obtain:

|ξ̇(τ)|
(

β − 1

2

)

+
(

σ − 1

2

)

≥ 0 ∀τ ∈ R (51)

On the (β, σ) plane the region for which energy dissipation
is guaranteed to exceed generation is then bounded by a line
that rotates with slope−|ξ̇(τ)| about the point(1/2, 1/2). It
is vertical when|ξ̇(τ)| → ∞, while it is horizontal when
|ξ̇(τ)| = 0. Therefore the device operating point(β, σ) is
guaranteed to be energy decreasing if it belongs to region A
or to region E, being above the critical line characterized by the
slopeξ̇max. In these regions the total energyHT is a Lyapunov
function.

Sec. III-B discusses the resulting regions in the parameter
space. Here we simply note that the viscosityβ provides
dissipation proportional to the square of the velocity, canceling
generation due to discretization. This effect is most relevant at
high speeds. At lower speeds, Coulomb frictionσ dominates
with dissipation proportional to velocity and cancels genera-
tion due to quantization. Of course, the two effects may assist
each other, for speeds below the maximum velocityξ̇max (15),
Coulomb dissipation can help viscosity to dissipate the energy
due to time discretization.

For regions C and D the energy balance allows only to
conclude that there exists a system trajectory for which energy
can be generated at any time. The worst case approach does
not provide a formal instability condition. In region B, energy
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may be generated for small velocities but is dissipated for
faster motions, thus preventing diverging behaviors. Again the
worst case approach can not provide formal conditions, but the
describing function method in Sec. VII confirms the existence
of persisting oscillations.

D. Energy Generation and Balance for τD > 0

In the case of delayed force feedback, additional effects
must be considered in the computation of energy generation.
First, we note the convenient integration extremaτ0 and τ1

are:
τ0 = l := h + τD τ1 ∈ [l; l + 1[ (52)

In this interval the actuated force is constant:ϕA(τ) =
−bξ(h)c−1/2. Therefore, by splitting the contributions of time
discretization and quantization, we have:

Egz(l, τ1) =

∫ τ1

l

[

ξ(τ) − ξ(h)
]

ξ̇(τ)dτ

=
1

2

(

ξ(τ1) − ξ(l)
)2

+
(

ξ(l) − ξ(h)
)(

ξ(τ1) − ξ(l)
)

(53)

and:

Egq(l, τ1) =

∫ τ1

l

[

ρ(h) − ρ(τ)
]

ξ̇(τ)dτ

=
(

ρ(h) − 1

2

)

(

bξ(τ1)c − bξ(l)c
)

+

− 1

2

(

ρ(τ1)−ρ(l)
)2

+
(

ρ(l)−ρ(h)
)(

ρ(τ1)−ρ(l)
)

(54)

where the last term of each expression represents the additional
contribution due to time delay. ForEgz it is straightforward
to obtain the upper bound:

Egz(l, τ1) ≤
1

2

(

ξ(τ1) − ξ(l)
)2

+
∣

∣

∣
ξ(l) − ξ(h)

∣

∣

∣

∣

∣

∣
ξ(τ1) − ξ(l)

∣

∣

∣

(55)
while the maximization of (54) with respect toρ(h), ρ(l) and
ρ(τ1) leads again to:

Egq(l, τ1) ≤
1

2

∣

∣

∣
ξ(τ1) − ξ(l)

∣

∣

∣
(56)

Moreover, the mean value theorem can be applied also to:
∣

∣

∣
ξ(l) − ξ(h)

∣

∣

∣
= τD

∣

∣

∣
ξ̇(η)

∣

∣

∣
η ∈ [h; l[ (57)

and the energy generated in the delayed case is thus bounded
by:

Eg(l, τ1) ≤
1

2

(

ξ(τ1)−ξ(l)
)2

+

(

1

2
+ τD

∣

∣ξ̇(η)
∣

∣

)

∣

∣

∣
ξ(τ1)−ξ(l)

∣

∣

∣

(58)
An expression analogous to (51) is finally obtained by com-
paring the energy dissipation evaluated in the time interval
(52) and by using (49):

|ξ̇(τ)|
(

β− 1

2
−τD

)

+
(

σ− 1

2
−τD

(

|ξ̇(η)|−|ξ̇(τ)|
)

)

≥ 0 (59)

If, according to (20), a maximum velocity and acceleration
exist, by usingτ − η ≤ 1 + τD, we have:

|ξ̇(η)| − |ξ̇(τ)| ≤ ξ̈max(τ − η) ≤ ξ̈max(1 + τD) (60)

which, recalling (13), leads to the expanded criterion:

ξ̇max

(

β − 1

2
− τD

)

+
(

σ − 1

2
− ξ̈max(τ

2
D + τD)

)

≥ 0 (61)

We see thatτD introduces additional phase lag that counters
viscous dissipation. Furthermore, the delayed application of
the quantized control force requires additional Coulomb fric-
tion to prevent sudden acceleration at low velocity.

VII. D ESCRIBINGFUNCTION ANALYSIS

The energy analysis outlined in Sec. VI allowed us to find
a worst-case condition to ensure that energy generation dueto
the digital nature of the virtual wall is always dominated by
the intrinsic dissipation of the device.

In contrast, describing functions [22] provide a simple and
powerful tool to analyze the system behavior in the “average”
case and provide estimates of the amplitude and frequency
of the self-sustained oscillations (limit cycles) predicted in
Fig. 3. Moreover, since we can examine the stability of these
oscillations as well, it is possible to use it to estimate the
boundary on the(β, σ) parameter plane between unstable and
stable behaviors.

_

ξ̇ 1
s

D(M)

ξ
ϕA = µξ̈ + βξ̇ + σ sgnξ̇

e−τLs

ϕA

Device

ZOH + delays

Fig. 10. Block scheme considered in the approximate describing function
analysis: zero-order hold and other time delays are lumped together.

In the following we will refer to the simplified diagram
description Fig. 10, where the dimensionless formulation (7)
is used. In particular, the zero-order hold is approximatedby
a time delay of1/2 and then lumped withτD. The encoder
is represented by its describing functionD(M). Note that
because of the integration required to obtain the positionξ
from the velocity ξ̇, the loop transfer function has a low-
pass characteristic that justifies the first-order approximation
involved in the application of the describing function method.

Let τL = 1/2+τD be the total loop time delay.G(M,ω)
approximates the nonlinear mapping fromϕA to ξ representing
the haptic device. From the Nyquist criterion, self-sustained
oscillations are likely to arise if:

G(M,ω)e−jτLω = − 1

D(M)
(62)

A. Describing function of the device model

If we suppose the existence of a sinusoidal motion of
amplitudeM (measured in encoder ticks):

ξ(τ) = M sin(ωτ) M > 0, ω > 0 (63)
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(a) Nyquist Plots
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Fig. 11. (a) Nyquist plots without Coulomb friction show the the existence of
limit cycles at finite frequency forτL > 0. (b) Encoder Describing Function
D(M) (solid) matches, forM < 1, its first termD1(M) (dash).

then the required actuation force is:

ϕA(τ) = −µMω2 sin(ωτ) + βMω cos(ωτ)+

+ σ sgn(Mω cos(ωτ)) (64)

Assuming thatϕA is also sinusoidal and neglecting higher
order harmonics [22] we approximate the sign function to
obtain:

ϕA(τ) = −µMω2 sin(ωτ) +
[

βω + 4
σ

πM

]

M cos(ωτ)

(65)

Therefore the device is described by:

G(M,ω) =
Ξ(M,ω)

ΦA(M,ω)
=

1

−µω2 + j
(

βω + 4 σ
πM

) (66)

whereΦA(M,ω) andΞ(M,ω) are the Fourier transforms of
ϕA(τ) and ξ(τ). The dependency on the amplitudeM is
required to capture the nonlinear effect of Coulomb friction.

B. Describing function of the quantization

Since the quantization nonlinearity (22) is static and odd
with respect toξ, D(M) is real and does not depend on the
frequencyω. Under the hypothesis (63), the quantization block
is approximated by the expression:

D(M) =
2

πM
+

4

πM2

bMc
∑

l=1

√

M2 − l2 (67)

If for the moment we assume no Coulomb friction, the Nyquist
plots in Fig. 11(a) graph condition (62) without and with delay.
For τL =0 the condition is satisfied and oscillations can only
occur at infinite frequency with zero amplitude. With a zero-
order hold or other delays (τL >0) the curves intersect at finite
frequency and amplitude. This confirms that limit cycles arise
because of quantization nonlinearity, even without Coulomb
friction.

In Fig. 11(b) we see thatD(M) matches its first term
D1(M) = 2

πM
for small amplitudes. AsM exceeds unity,

D(M) quickly tends to unity. In other words, the quantiza-
tion effects are most relevant for small motions, while the
quantized measurements are good approximations of the real
displacements forM > 1. Within the limits of the approximate
quasi-linear analysis, (62) can be solved in these two separate
cases, leading to two different families of oscillations.

0 1.5 4
0

0.5

1

β

σ

τL = 1.55

M ↑

(a) M < 1: stable oscillations

0 1.5 4
0

0.5

1

β

σ

τL = 1.55

σ = π
4
√

µ
(τL − β)

M ↑

(b) M > 1: unstable oscillations

Fig. 12. Contour maps of amplitude and frequency of small (left)and large
(right) oscillations on the(β, σ) plane forµ = 5.

C. Solution for small amplitude (M < 1)

If we assumeD(M) ' D1(M), the condition (62) for the
existence of a limit cycle can be rearranged into:

{

2

πM
cos(τLω) = µω2

2

πM
sin(τLω) = βω + 4σ

πM

(68)

From the first equation, we relate frequency to magnitude via:

M =
2

πµ

cos(τLω)

ω2
(69)

This admits exactly one solution forω < π/(2τL) and
states that the amplitude decreases for larger values of the
dimensionless inertiaµ. Since analytic determination of the
frequencyω is difficult from (68), it is more convenient to
identify the(β, σ) parameters necessary to achieve a givenω.
By combining (68) with (69) we find:

σ =
1

2
sin(τLω) − β

2µω
cos(τLω) ω ∈ [0;

π

2τL

[ (70)

This describes a line on the(β, σ) plane. Fig. 12(a) shows
the set of lines obtained for different values of amplitude
and frequency clearly supporting the fact that small amplitude
oscillations can occur only ifσ < 1/2. With increasing
amplitudeM , σ andω decrease from1/2 and π

2τL

respectively.
Finally, the stability analysis of the Nyquist plot shows that
these limit cycles are stable. This type of oscillation was
detected in Fig. 8(b) with an amplitude bounded by one
encoder tick.

D. Solution for large amplitude (M > 1)

For large amplitudes, the encoder describing function ap-
proximatesD(M)'1 and (67) reduces to the classic Nyquist
criterion. These limit cycles are unstable, i.e. oscillations above
a critical value grow unbounded, while smaller oscillations
decay. As such, the solutions to (67) determine a stability
boundary. In particular, we have:







cos(τLω) = µω2

sin(τLω) = βω +
4σ

πM

(71)
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The first equation forces a solution forω < π
2τL

independent
of M , while the second leads to:

σ =
πM

4

(

sin(τLω) − βω
)

ω ∈ [0;
π

2τL

[ (72)

Positive values ofσ requireβ≤τL and, as Fig. 12(b) shows,
the solutions occur only in regions of small viscous friction.
Moreover, if the frequency is sufficiently small to approximate
cos(τLω) and sin(τLω) by their series expansions, we have:

ω ' 1
√

µ + 1

2
τ2
L

(73)

and (72) becomes:

σ =
π

4
Mω (τL − β) (74)

The substitutionξ̇max = Mω, corresponding to the maximum
velocity for sinusoidal oscillations, highlights the similarity
to the critical line separating the stable and unstable regions
D and E in Fig. 3 and 5. With respect to the energetic
analysis, (72) intersects the point(1/2 + τD, 0) instead of
( 1

2
+ τD, 1

2
). This is consistent with the fact that (19) is

obtained through a worst-case analysis, while (75) describes
the “average” behavior.

Finally, we note that ifµ � τ2
L/2 and with M > 1, the

system can be stable only if:

σ ≥ π

4
√

µ
(τL − β) (75)

Below this line the Nyquist criterion confirms, within the limits
of this approximate analysis, that the system is unstable.

VIII. C ONCLUSIONS

This work has examined the stability of a haptic display. It
relates the inertia, viscous, and Coulomb friction of the device
to the controller stiffness, sampling rate, encoder resolution,
and computational or amplifier delay. The dimensionless ap-
proach highlights critical parameter and identifies distinct
stability regions.

The nonlinear effects of quantization and Coulomb friction
lead to multiple behaviors categorized as passive, locally
stable, limit cycles and unstable. Of particular importance is
the condition of stability that occurs for devices with limited
viscous damping. Most current devices fall in this category
and violate traditional passivity conditions. But both a worst
case and an average case analysis shows why Coulomb friction
allows them to operate successfully.

We hope this work will provide better insights on what per-
formance level can be expected from existing haptic systems
and how to best tradeoff system parameters. We also hope to
inspire better controllers and ultimately improve the design of
future haptic systems.
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