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Abstract— Rendering stiff virtual objects remains a core chal-

lenge in the field of haptics. A study of this problem is presented, i T4 /m\ R A/D - DIA RSN AAAN §
b
= c

which relates the maximum achievable object stiffness to the N —_ INTERFACE

elements of the control loop. In particular, we examine how the Fy Fy Fy K
sampling rate, quantization, computational delay, and amplifier

dynamics interact with the inertia, natural viscous, and Coulomb
damping of the haptic device. Nonlinear effects create distinct
stability regions and many common devices operate stably, yet in Fig. 1. A single degree of freedom of a haptic interface reindea virtual
violation of passivity criteria. An energy based approach provides stiffness

theoretical insights, supported by simulations, experimental dat,
and a describing function analysis. The presented results subsume
previously known stability conditions.

. o ' entails time discretization, quantization of both positiand
_ Index Terms— Haptic Interfaces, Quantization, Coulomb Fric-  force information, computational delays, and current afinpl
tion, Amplifier Dynamics, Passivity, Virtual Objects cation with limited bandwidth. Clearly these “non-ideiait’
limit the maximum stable feedback gain that can be reached.
|. INTRODUCTION Implementation of stiff virtual objects has proven to betjgar

HE field of haptics aims to provide the user with a sen ularly demanding for common low inertia and friction de\dce
f touch whilp interactin E/)vith imulated obiects in et rendering stiff objects is a basic necessity of haptsteyns
1 of fouc € Interacting simuiated objects N &4 considerable research effort has been invested tozanaly
virtual world. It uses force feedback to render the kinetsthe

. L . - control strategies and increase performance.
perception of contact with virtual objects, striving to reguce 9 P . )
realistic sensations Energy based approaches have been used in [6]-[8] to view

This is commonly achieved by means of an electrsome of these limitations and provide stability conditions
@ssivity is sufficient for stability, if the operator is debed

mechanical haptic device and associated computer ingerf : ! .
P p %y unknown passive elements [9]. The time delay introduced

to connect the user to the artificial world, as illustrated h der hold d ini . h
Fig.[1. Impedance devices [3] apply forces computed by X the zero-order hold generates and injects energy into the

virtual stiffness, which is raised as high as possible taleen sg steTmh_énergy leaks according to th_e rlork?le;{lc_lfa turte d'uisd n
hard contacts. These devices exhibit low intrinsic frictend [8]). This excess energy may cause instability if not disi

inertia to minimize dynamic distortion of the user's pertep by the haptic device’s intrinsic friction or through coritro

[4] and may trade off the number of actuated and Sensgar.example, [10]_proposes to predict the position (.)f the
degrees of freedom (DOF) to optimize performance [5]. evice at the next time step to reduce energy leaks, while [11

Besides the characteristics of the mechanical device, t%namically estimates the energy generation and uses dissi

achievable stiffness and performance depends on the cempﬂﬁt'on through a digital damper element. A port-Hamiltonia

interface. Usually implemented as a digital control lodpst approach is followed in [12] to track and dissipate energy
excess. Yet these control strategies do not explicitly asto
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Coulomb friction plays an important role in force-feedba i
mechanisms [16] and haptic devices.

The results are supported by a rigorous theoretical energy !
analysis and an approximate describing function analysis. 3
They are validated through simulation and experiment aad a

(z, ) | TV

TR /
T

quantization

consistent with the performance of a variety of commercig OPerato Device

haptic devices. We hope to facilitate both control and devic
designers alike to create effective haptic systems.

The paper is organized as follows: in Sec. Il we detail the
problem and define our approach. We give and discuss the
main results, including stability criteria, in Séc. Ill. @& are
validated through simulation in Sec. IV and experimentaily Fig. 2. Block diagram of the haptic system, connecting the lruoser with
Sec] V using a single degree of freedom device. The andlytigée virtual spring
proof of energy generation and dissipation is presented in
Sec.[ VI, followed by the describing function analysis in

Sec. VII. We conclude in Se€. VIIl with some brief finalthe spring is assumed to be bidirectional, which is equitale
remarks. to the situation of a steady state position inside the odeesi

virtual wall. Without bidirectional spring forces or a bisce,

contact will necessarily be broken and no further controdds

o will be applied. We place the origicz = 0 at the encoder

A. System Description boundary nearest the steady state position. Furthermaze, w
It is a common goal in the field of haptics to rendeassume a residual bias of 1A in (2), so that the spring

contact with a seemingly rigid virtual wall. This is gendyal force is symmetric about the origin but finds no steady state

accomplished by simulating a one-sided stiff spring forcealue as:

that is displayed to the user through the haptic device while |Fy (hT)| >

the virtual contact is sustained. Our developments study th ’ N
maximum achievable wall stifiness and its relation to thEhiS poses the most challenging boundary conditions for
computer interface and device parameters. As such, we fodhe controller. Thg zero-order hold maintains this desired
on a single degree of freedom depicted in Fig. 1. The hapfigntroller force during each servo cycle:
device consists of a physical inertim and has intrinsic Fo(t) = Fy (hT) Vte [hT;(h+1)T[,heN (4)
friction, attributed to both viscous componentand dynamic
Coulomb components. Its positionz and velocity# result Finally, we consider the destabilizing lag caused by the
from the forceFy; applied by the human operator and the forc@mplifier circuitry without the benefit of the high frequency
F, exerted by the amplifier to simulate the virtual stiffnggs attenuation; below its cutoff frequency,, the amplifier

A computer interface relates the continuous real device #§havior very closely matches the response of a simple delay
the discrete virtual world. As many researchers have recog- 264
nized, the elements constituting this interface can intoed Ta= wa ®)
oscillatory or unstable behaviors. Shown in Fig. 2, we exami
guantization of the signal, discrete sampling at time wakT

+ |+
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whered 4 is the amplifier's damping ratio. We also allow for
. : ) , a computational delay,, typically equal to or below one
apdhas§OC|a|ted z_ero—order ho'(;j’ poslgfl_bleddelays. n Commt_asample period. This arises, for example, when complexalirtu
of the virtual environment, and amplifier dynamics. QUaMIZ ¢ ironments are simulated and necessitate collisiorctiete

tion of the command forcé'c is introduced by the position 415 ithms petween objects. Both delays together affeet th
sensor and the D/A converter. For high stiffnesses a singﬂé’ce applied to the haptic device:

encoder tick results in a large force command corresponding
to several D/A steps; in the following we shall thus refer to Fa(t) = Fo(t —Tp), Tp=Ta+Tv Vt>0 (6)
the encoder resolution as the main contribution to quatibiza

effects. B. Dimensionless Parameterization
The haptic device is modeled as a point mass and describeg reduce the number of parameters, we perform a dimen-
by the differential equation: sional analysis. In particular, we measure position neatd

mi(t) + bi(t) + csgn(@(t)) = Fr(t) + Fa(t) (@) @ single encoder quantur{ﬁ, time relative to the sampling
interval T', and force relative to the smallest force st&p\

Meanwhile the virtual spring force is governed by: matching one encoder tick. Velocity is expressed relative
2 (hT) 1 to one encoder quantum per sampling interys/T. The
Fy(hT) = —KA Q A J + 2) Vh e N (2) resulting dimensionless signals as well as device andfauter

parameters are summarized in Tdble .

where T' is the sampling time/. denotes the discrete time The differential equatiori (1) may be written as:
variable, A is the combined resolution of the encoder and . ) .

the D/A converter, whilg|.| refers to the integer part. Note  #&(7) + B¢(7) + 059”(5(7)> =ou(t)+ealr) (7)



Signal / Parameter Dimensionless Value , L . . . . .
g user’s grip, it is not arbitrary; it necessarily containkatieely

Spring stifiness K low stiffness and high damping. In the following, we conside
E”C(’dl_er r?so'“t"l’” A the worst case stability scenario with minimal damping, in
ampling interval 7" which the user is not or barely touching the haptic device,
Time ¢ S thus qdding negligible impedanc;e to the sy;tem. The additio
T damping of a stronger user grip would reinforce the natural
Position x g;:% damping of the device. As we shall see in Sec. IlI-B, such

, an effect enhances stability and is consistent with praktic
Velocity @ &(r) = = experience: a heavy grip stabilizes the interaction whiigle
grip is the most challenging.

Force F = % Therefore we focus on the Lyapunov analysis of internal
haptic loop connecting the virtual spring to the physicalice.
Combined loop delay T rp = LD Using an energetic analysis, we confirm that for appropriate
T parameters ranges, the energy stored in the device and in the
Mass m b= K’; virtual spring is a suitable Lyapunov function [18].
Viscous friction b 8= % _ . M AIN RESL?LTS _
. In presenting our results, we first state the main energy
Coulomb friction ¢ o= x dissipation criterion and show the distinct stability g
that span the parameter space. This summarizes results of
an energy-based and a describing function analysis and is
TABLE | also supported by simulation and experimental work. We give
DIMENSIONLESS SIGNALS AND PARAMETERS the criterion in the case of no delay = 0), interpret
its implications, and then provide the extension to delayed
feedback.

Before proceeding, we recognize the need of a sampled data
system to avoid signal aliasing. The sampling frequesngy
po(t)=—[&h)| —5  Vre[hh+1], YheN (8) mustexceed twice the natural frequengy:

= - 9
()OA(T) QOC(T TD) ( ) wg = 21 > 2wn = 2\/? = 2\/> L (10)
T m pwI?

where the dimensionless forces are:

C. Stability Approach This places a lower bound on the dimensionless device imerti
Haptic systems are typically analyzed in the framework S 1 (11)
of passivity. Knowing that the feedback interconnection of B>

any two passive systems is stable [17] and that most réabspective of the system behavior. In the following we
environments are passive, it is a common goal to make tben therefore focus on thes3, o) parameter plane, relating
haptic system appear passive to the user. We follow thise dimensionless viscous and Coulomb friction to stabilit
tradition but we make two important notes. First, a humasroperties.

operator is not truly passive and hence the stability of dibap

interaction can not be immediately assured, even if thecdeviA. Dissipation Criterion for Zero Delay (7p=0)

appears passive. Fortunately common experience shows thag haptic control system depicted in Figl 2 is proven to be
humans are skilled at interacting with passive objects and gnergy dissipating if:

so in a stable fashion [9]. Second, passivity of the haptic 1
interface is not strictly necessary for stability. As welwgite, 1 -3 1
the system may violate passivity requirements but resuét in (ﬁ — 2) + é >0 and o> 3 (12)

stable operation. As such we carry out a Lyapunov analysis )
based on the energy storage function. where a positive maximum velocit§,..,. exists such that:

More specifically, a human operator will actively move at : :
frequencies below 10 Hz and may generate energy. But in this ‘g(t)‘ < Smax vt =0 (13)
low frequency band the inertia and friction of the mechanism If the system experiences a stable interaction of the device
together with the simple virtual spring appear passive amth the virtual stiffness, the maximum velocity and energy
interactions are stable. Effects of computer interface@pp occur at the moment of initial impact, hence:
mations and lag are negligible. . : .

In contrast, at higher frequencies the artificial stiffness Smax = £o with & =0 (14)
can cause substantial problems. Instabilities usuallyoat Subsequent velocities remain bounded as the energy is dissi
several hundred Hertz. Here the user imposes on the systeated. If a maximum velocity,,.. does not exist, the kinetic
an impedance consisting of stiffness, damping, and pgssilenergy is also unbounded and the system is clearly not energy
added mass. And while the impedance can change with tissipating.



B. Sabhility Regions a

The nonlinearities of signal quantization and Coulomb-fric
tion cause five distinct stability regions to exist withineth = &maxtl Loca”y§
(3, 0) parameter plane shown in Figl 3. While the dissipation Stable

criterion {(12) proves stability of regions A and E, operatio
in B, C, or D may generate energy. We rely on the describing
function analysis, simulations, and experiments to ingegt
and further classify the behavior in these sections.

Globally

Stable (Passive)

B >1/2, ¢ >1/2: This is the only region wheré (12) @Loc'

is satisfied regardless of the maximum velodjty,,. A Unstable
system operating in this region will be globally stable. 1

Moreover, it is the only region in which the system is 3 .'-imit

passive [17], [18] with Coulomb and viscous friction Unstable | Cycles

together dissipating any spurious energy generation due |
to quantization and discretization.

8 > 1/2, o < 1/2: This region gives rise to small
amplitude stable self-sustained oscillations (limit el Fig. 3. Regions of th€j, o) plane: the term unstable implies the system
Analyses and tests confirm the amplitude of these limitay continuously generate energy in the corresponding megio
cycles remains below a single encoder tick. Without

significant Coulomb friction, the viscous damping alone

is unable to suppress energy generation at these [R@P parameters:

speeds. It does, however, prevent faster motions and . o—1/2 ) 2¢c — KA
hence stabilizes the cycle. Smax = 1/2-8 < Tmax = o op

B<1/2 0 <1/2 Systems operating In .th.ls reglon hey would become unstable. At such high velocities, Coblom
may generate energy at all times. The describing functign

analysis confirms that the system is unstable and, at Ie%%%tfg B;Oe\?sdizlr:ttilr? e]:f:g:i'zg (:sr?;g\?gognlcowgi:aﬂzrooiie
under a light touch, the haptic user interaction will als Y- P y N

be unstable. ey will not distinguish operations in regions A and E, wer

: . the total energy monotonically decreases.
1/2,1/2 1/24Emax(1/2—0): I . .
p< /.’. / SO / fﬁ wx(1/2= ) Operatlo_n below Table[ Il summarizes the relevant data, expressed in carte-
the critical line associated to6 (12) may again generate

eney and causs instaity. Howevr, he loatn G 268, . Sommen st o sonmerealy mlebe
the critical line is dependent ofy,.., that corresponds P ' P Y

to the initial velocity [(14). The instability is thereforeoperat'on n the I_ocally stable region E, also depicted in
dependent on initial conditions and marked as local. F'.g‘ 4. _We investigated the_ Omega and Delta from_ For_ce
B<1/2, 0> 1/2+£-max(1/2_5): If the device velocity re- Dimension, the Impulse Engine 2000 force-feedback jolstic
mains limited below the threshod,,... Coulomb friction from Immersion, the MIT Toolhandle [19], the Phantom 1.0
is efficient in dissipating energy even i< 1/2. Energy [4] from Sensable, and the MPB Freedom6. Manufacturer

. . o X . ifications and identification pr r nal
in this region is monotonically decreasing. AnalogouslSpeC cations and identification procedures analogoug [

to reqion D. the boundary depends on initial condition rovide estimates of mass and friction coefficients. Alsegi
glon B, cary depel re the encoder resolution, typical sampling intervalgd an
through&,,.« and stability is again local.

v

g

(15)

We find that most haptic devices rendering their maximum

stable stiffness operate in region E. Their dissipationoisd iR
inated entirely by Coulomb friction, which works well at low o
speeds. Should these systems experience a velocity faater t
the maximum velocity allowed by device friction and control 5
PHANToM 1.0
=Freedom6
Device m b c A T K “w Jéj o .Omega
Kol [NSm] [N | [pm] [mg [N/m] I e nino
Delta 0.250 0.01 0.883 | 30 0.33 14500 155.2  0.002 2.03
Freedom 6 0.250 0.01 0.06 | 20 1 2400 104.2  0.025 1.25 .MITTooIhandIe
Impulse Engine | 0.032  0.02 0.024 | 314 0.2 800 | 1007.8 0.13 0.97
MIT Toolhandle | 0.119  0.001 0.034 | 20.1 1 3125 38.19  0.0003 0.54
Omega 0.220 0.01 0.147 | 10 0.33 14500 136.6  0.002 1.01
Phantom 1.0 0.072  0.005 0.038 | 29.1 1 1015 70.55  0.004 1.29
[ Human Operator] 0.150 4.8 [ 600 | \ 1 5 g i
TABLE Il
PARAMETERS OF COMMON DEVICES Fig. 4. Effects of wall stiffnessK, sampling timeT" and

encoder resolutiod\ on the(3, o) plane.



maximum achievable stiffness that can be rendered osciilat o

free without additional human stabilization. Note that epic [E] Locally

1,4 (1
for the Impulse Engine, the viscous friction coefficientsiido 2 * émex (3 +70) + Stable

only be bounded due to the resolution of the measurement +max (7o + 73) [F1]Locally
instruments and estimation techniques. Stable

Finally, for comparison only, we show the lumped parame-
ters of a human operator in a configuration typical of haptic [B] Lo
interaction [21]. Note especially the high viscous damping .
As the human stiffness and damping apply in parallel with 1 E(rh 4 ) UnsEble
the device parameters, the effective viscous coefficient is LW,
substantially raised by appropriate human touch. |.e suseiy - [F2] stable (Energy not-Lyapunov)
shift the system from region E into the passive region A. This n R
reiterates and supports our discussion of Sect. II-C and our gl [clowbaly | [B] Limi

choice to focus the stability analysis on the worst-casaaie Unstable SEES
with no user dissipation.

C. Interpretation
- . . Fig. 5. Regions of thég, o) plane for delayed feedback: the term unstable
The stability regions may be seen as generalizing Colgatgé‘in implies the system may continuously generate energy.

inequality (3>1/2 in the dimensionless formulation) [7] to
include dynamic Coulomb friction and sensor quantization.

If the system is sampled without quantization, the dlSﬂW’at where a positive ma?(imum Ve|00it)fmax and a positi\/e

criterion (12) relaxes to: maximum acceleratiof,,.. exist such that:
1 o KT c . . .. .
Nz o (D) fojsn [folzie weo o
(16)

and regions B and C are removed from the parameter planeThe delay raises the values gfand o required for stable
We find Coulomb friction assisting viscous damping espicialoPeration. It also splits the former passive region A int@ tw

for small velocities, consistent with physical intuition. sections F1 and F2. In F2 the system may briefly generate
We also see qualitative distinctions between the two dis§inergy. However, unlike its neighbor B, extended motions in

pation effects. Froni (12), the viscous friction: F2 dissipate energy and the system remains stable. This is
1 KT confirmed by the describing function analysis and is labeled

B> 3 & b> - (17) as stable, but remarking that the total energy here is not a

apunov function.
n region F1 energy dissipation is continual and the system
thus stable, with the energy monotonically decreasimg. T
Qbel this area as passive, we would have to postulate a
global maximum acceleration valid for all signals or iritia
KA " . . . " .
=N c> — (18) conditions. In practice this may occur with amplifier satiana

1
2 ] ] 2 but falls beyond the assumptions we wish to make here.
must be able to hold the device against the step force Changeﬁinally, we note these results are consistent with [14].&#nd

due to quantization to avoid limit cycles. Both effects tibge the assumptions of — o/(6mp), 70 = 1, and without
max H - L]

support passive operation; one effect by itself can onlytere ;. ntization, Mahvash and Hayward determine the stability
a locally stable system or stable limit cycles. criterion 3 > 2

For a particular device, with fixed mass, viscosityb, and
Coulomb frictione, we may influence stability by selection of
K, T, and A. Increasing stiffness< affects boths and o; IV. SIMULATIONS

the operation point moves in a straight line toward the arigi  gefgre providing an analytic proof of the mappings(12),

and hence toward instability, as shown in Fig. 4. Consistefilg) \e confirm the stability regions illustrated in Fig. 34
with intuition, larger sampling time§' and encoder stepA through simulations.

are also destabilizing, lowering or o respectively.

should balance the stiffness and effective delay due to t
sampling and zero-order hold; the phase lag of the zero-
order hold is compensated by the phase lead of the viscos||
Coulomb friction:

o>

The dimensionless model|(7) has been simulated assuming

D. Extension to Delayed Feedback no |n|t|_al deflectioné, = 0, different initial velocitiest,, and
} . B a null input from the human operator.

Most practical systems experience some amplifier and com-p grid of 714 different values of 3, o) has been considered.
putational delay in addition to the effective delay of theaze The state vectol¢, €) has been evaluated at= 5 x 10%,
order hold. A hap_tic (_:ont_rol system with delay, is proven corresponding té = 50 sec. for a sampling tim& = 1 ms, to
to be energy dissipating if: determine the stability of each operating point. Zero druss

1 detection allowed increased resolution of the numericlieso

. . 1
_— — — 2 J—
0= 5 = Smax (75 +7D) + Emax (6 2 TD) =0 (19)  and accurate simulation of quantization and Coulomb ficti



. 3 . . ﬁ . . . . 8 .
(a) gmax = 60 =1 (b) gmax = 50 =5 (C) gmax = 50 =10 (d) gmax = 60 =20

Fig. 6. Stability regions on th&3, o) plane forrp = 0 andp = 100: dark, medium, light and white areas represent growing, gtersi, non-monotonically
decaying and monotonically vanishing energy and osciliatio

o}

8 8 . B, .
(@) Emax = &0 = 1 () &max =0 =5 (©) €max = &0 = 10 (d) &max = €0 = 20

Fig. 7. Stability regions on thés, o) plane forrp = 1.25 and . = 100.

High numerical resolution about the equilibrium allowedaal Kg m?. Variations of 3 and o were obtained by artificially
discrimination of oscillating and converging trajectarie reducing the servo rate and encoder resolution.

Results obtained withy = 100 and four different initial  Because of the simplicity of the virtual environment, the
velocities, for a system without time delays, are shown igobmputational delay was negligible. Similarly, due to the
Fig.[6. The dark areas represent growing oscillations, umedi configuration, the time delay related to the amplifier dyremi
areas denote persistent oscillations, light and whitesssbaw was also negligible. We therefore compare the experiments
vanishing oscillations with non monotonically and monatonagainst criterion (12) and Fig. 3.

cally decaying energy respectively. In contrast to the simulations, an initial deflectigf with

~We see a good correspondence between the prediction a8dmqtion €, — 0) was used to create repeatable conditions.
simulation outcomes with strong agreement with the stgbili5p, equivalent maximum velocitwjmax to separate regions of

regions of Figi 3. We note that (12) stems from a worst cagg (5 ) plane, was computed as if all potential energy was
analysis, so that the actual stability regions are sliglefger 1.ansferred to kinetic energy.

than predlcted.. . . . Fig. 8 shows the outcomes obtained in different regions
The same simulations have been repeated with a time de'?ythe (3,0) plane. The left portion of each graph shows

7p =1.25 and the results are shown in Fig. 7. We again fmﬁne operating point and the critical line associated wité th

go0d cortespondence (0 the regions of £9- 5 and i Pareisacongion, while the rght side shows the temporal

diagram of the angular displacement. In the right diagram,
the dashed horizontal lines correspond-td@ encoder tick.
V. EXPERIMENTAL RESULTS In Fig. [8(a), we evaluated a point located in the globally

Experimental validation of the analytical results has beestable region and, despite the high initial velocity seen by
carried out by means of a Maxon RE35 motor equippdte steep slope of the critical line, the position converges
with an encoder having 8192 counts per revolution. As the origin. By artificially lowering the encoder resolutjche
rotational device, positions and forces in (1) correspamd bperating point is moved to region B. In Fig. 8(b) we see,
angles and torques. The current amplifier, a Copley moded predicted, persistent oscillations below a single esrcod
403, was commanded via a 14 bit D/A interface from theck. Finally, by changing the servo rate, operations in the
RTAI-Linux control loop. The amplifier was configured tolocally stable and unstable regions D-E were tested. \ariat
have a bandwidth o8 KHz with servo rates varying from in the initial conditions changes the critical boundaryelito
100 Hz to 1 KHz. Coulomb friction was estimated at= below (Fig| 8(c)) and above (Fig. 8(d)) the operating poi.
2 x 102 Nm, substantially higher that viscous frictidgn= predicted, with increased initial energy in the virtual isgy
9 x 10~% Nm/rad sec; the motor inertia was = 6.28 x 10~ the system becomes unstable.
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V1. ENERGETICANALYSIS OF DIGITAL SPRINGS ff\ I ) 205 B e
| z BT va
From an informal point of view, the system of Figl 2, | [ | — y
comprising the device, the computer interface and the a,ilrtu \Jf _ ' compression
environment, is passive if only the stored energy can be Lo P .
extracted by the user. '\ e '\
However, previous work [6]-[8] showed energy generatior’ oSttt ) 38 restitution
for a discrete time, non-quantized virtual spring due to the e |
time delays introduced by the discrete time |mplementat|on ol
The causes of non-passive behaviors can be easily analyzed N s
by means of the displacement/force diagrams shown in_Fig. 9. 1 ’ 53 ) ’ ’ 1 ’ 53 ) ’
We compare a physical springp, a quantizedbut time (@) (b)

continuous spring ¢, a discretizedout non-quantized spring
vz, and the digital (i.e. quantized and discretized) courikrp Fig. 9. Comparison of force/displacement diagrams. Left: jghygdashed),

seen in the haptic syste 8): quantized (solid), time discrete (square filling) and didigmay filled) spring.
ve P y n ( ) Right: Digital (gray filling) and digital delayed spring (sare filling).

ep(r) = —&(1) (21)

_1
po(r) =—1&(1)] — 3 (22) g entirely extracted during restitution. In other wordsergy
pz(1) = —¢(h) VT € [hyh+ 1] (23) s not dissipated nor generated. The corresponding diafpam
wo(r) = —|¢&(h)] — & Vrelhh+1] (24) ¢q is given by the solid line of Fid. 9(a). Though no longer

smooth, the compression and restitution forces still matuh
The compressioné(> 0) and the restitution§(< 0) phases again no energy is generated nor dissipated. Quantizagion i
of a linear physical spring generate exactly overlappinyesi purely position dependent and by itself is not a source of
(dashed line in Fig. 9(a)), energy supplied during compoess energy leaks.



On the other hand, time discretization causes hystereB@d only for a limited set of initial conditions. This behar
loops to arise: the net result of the compression and ttsecharacteristic of local stability.
restitution phase is work that the haptic display does onlin the following, the analytic expression ¢, will be
the human operator and corresponds to generated eneogynputed and (30) will be investigated considering at first
The square filled and the gray filled diagrams of Fig. |9(adhe non-delayed case, =0 and then generalizing the result
represent the behavior af; and of its digital counterpart to 7p >0.
pc respectively. Comparing the generated energies, we note
that the latter can be either larger (see Fig.|9(aj at1) or
smaller (se€ ~ 2) than the former. The loss of information . o o
related to the quantization process affects the overaliggne 1he total energyHr(¢,€) of the haptic display IS given
balance. A worst case analysis is required to estimate théthe sum of the kinetic energy of the devitg, = ;¢
maximum amount of additional energy generated because®9f Of the pseudo-elastic potential enefgy(¢) stored by the
the combined effect of quantization and sampling. quantized, time-continuous spring,:

Finally the digital springpc is compared to its delayed .
version ¢4 (9). Whenrp > 0 a larger amount of energy He(€) = _/‘pQ(T)g(T)dT: _/SOQ(g)dg 31)
is likely to be generated. However, situations may arise (se
Fig.|9(b) até ~ 5) when the delayed springs generates less
energy. Again, a worst case analysis is necessary to account p=¢E— €] 0<p<l1 (32)
for the delay7p.

In order to formalize these behaviors, (22) and (7) can wi(_:h is a function exclusively of the positiop Its integral
used to obtain: is given by:

. . . E
o ()= (1)) + [sé(r) +osan(én)] + | ptoax = 5le+ 540 (33)
- [@A(T) - QDQ(T)] (25 From [22), the potential energy may be computed as:

A. Sorage function of a quantized spring

To computeH,. (£), we define the quantization error as:

With ¢ (7)¢(7) describing the instantaneous dimensionless § 1 1, 1 )
power delivered by the operator to the haptic system, thé(¢) :/ (X_P(X) + 2) dx =3¢ +§<p(§) =P (5)>
energy exchange during a generic time inteffvgl 71] is: (34)

- ' where the term depending o¢r¢) is always positive because
/(pH(T)f(T)dT:HT(’Tl)7HT(T())+Ed(7'0,Tl)ng(To,Tl) p € 10;1]. Finally Hr (&, €) is given by:

K (26) Lo 1o Lo,
where the following definitions have been used: Hr(6,8) = 2u£ + 25 + 2 (p(f) P (g)) (35)

Hr(m1)—Hr(10):= / [ME(T) - @Q(T)] §(r)dr (27) B. Energy Dissipation
o We consider viscous and dynamic Coulomb friction, repre-
sented by the dimensionless paramete@nd o, and provide
a lower bound for their energy dissipation. Coulomb frintio
. is most effective at low velocity, while viscosity dominate
Ey(10,71) == / [pa(T) — oo (1) &(T)dr (29) at high speed. We ignore any additional frictional phenomen
7o that would further increase the dissipation.

Here Hr () = Hy(E(7),£(7)) is a positive definite function . 5)[/7;?;&1{Iiigge@()a,stshe%dg?ipated energy in the time interva

representing the energy stored by the haptic interfdce,

Ealro.m) = [ [é(n)+osan(ém)] ériar @9)

represents the energy dissipated because of physicabifrict ™ ™o
while E, is the energy generated by the “non-idealities” in Ea(7o,71) :/T 652(7)dT+/T 7 ‘5(7)‘ dr (36)
the control loop. ’ ’
By recalling the notion of dissipativity [17], [18], system = Ep(10,m) + Eo(70,71)
(7) connectingpy; to £ is passive if: A lower bound for Ej, representing dissipation due to
Ea(ro,m1) > E,(r0,71) Y > T (30) mzc(;c:;;&‘/r:cﬂon, can be obtained from the Cauchy-Schwarz
for any initial conditions and user inputs. Then physical - 1 - 1 -
friction overcomes any spurious energy generation. Fatigw (/ 52(7)d7> </ 12d7’> > / 1f(r)d7 37)
arguments of Sec. 1I1C, we focus on the stability of the lapti o o 0
system without user inputs. If the system is passit; which leads to:
always monotonically vanishes and can serve as a Lyapunov 2
function to verify global stability. In this setting we fingr (5(71) - 5(70))
Es(m9,711) > """ (38)

recognize that, depending on system parameters, (30) may -0



The triangle inequality may be used to bound the dissipatidimis maximum is reached, depending whether the measured
E, due to the dynamic Coulomb friction: displacement&(m )] — [£(h)] is positive or negative, when
p(h) = p(m1) = 0 or p(h) = p(m1) = 1. It is immediate to

/T1 S(T)’ dr > /n E(r)dr| = ‘g(n) — 5(70)’ (39) verify that in both cases, (45) simplifies to:
To To 1
Thus the total dissipated enerdy; is lower-bounded by: Egq(h,m1) < 5‘5(71) - §(h)’ (46)
(5(71) _ 5(70))2 The energy generated during the motion fréth) to &(r )
Eq(ro,m1) > 8 4 a’f(ﬁ) _ 5(70)’ (40) is finally at most:

1 — 7o

1 2 1
In other words, friction losses are minimized when the devic Eq(h, 1) < 3 (5(71) - f(h)> + 5‘5(71) - f(h)‘ (47)

moves fromg (7o) to £(r1) with constant velocity. By comparing this upper bound with the lower bouind (40) for

the energy dissipation evaluated for= h, we can state that

C. Energy Generation and Balance for 7p = 0 the dissipation inequality (30) holds if:
In parallel to Sed. IlI, we first analyze energy generation in 9
the caserp = 0. In this situation we have 4 (t) = ¢ (t) and (5(71) - 5(h))
E, in the time intervalr € [r; 71 [ becomes: B U‘f(ﬁ) - f(h)‘ >
71 . 1 2 1
E,(10,71) = / [po(T) — po(T)]E(r)dr  (41) §(£(n) - €(h)> + 5\6(71) - f(h)\ (48)

for everyr; € [h;h + 1] and for everyh € N. In the event
that£(m) = £(h), (48) is trivially satisfied as an equality. In
other cases we can divide bg(m) — £(h)|. Moreover, since
the velocity is a continuous function, the mean value theore

To simplify the analysis, we place the initial timg = h at the

beginning of a sampling interval. The dissipation inegyali
(30) must hold for any timer; > 73, which can span
multiple sampling periods. This is assured if energy getimra i
is balanced by dissipation during each sampling period Iaplds.

fraction thereof. And so we examine the generation between’g(ﬁ) — 5(;1)‘ =(r — h)‘f(r)‘ 7€ m] (49)
h and T, € [h;h + 1], wherepc(7) is constant. Using (22),
(24) and[(32) we have: and [(48) can be rewritten as:

T1

Eg(h,ﬁ):—/h (L)) ~ L&) )€y OICE Tl;h) + (o~ %) >0 (50)

— [ (let)=6] + o) ot} )é(rrar =

- E9Z(hv 1) + qu(h, 1)

Finally we note tha{r, — h) € [0; 1] and obtain:

Ié(T)\(ﬂ—%) + (a—%) >0 VYreR (51)

(42) Qn the (3, 0) plane the region fqr which energy dissipation_
o ) ) _ . is guaranteed to exceed generation is then bounded by a line
Ey. and E,, are the contributions given by discretizationnat rotates with slope-|£(r)| about the poini(1/2,1/2). It
and by the combined effect of quantization and discretratijs vertical when|¢(r)] — oo, while it is horizontal when

respectively. Note that for notational simplicjty~) stands for £(7)| = 0. Therefore the device operating poifif, o) is

p(r). guaranteed to be energy decreasing if it belongs to region A
If the device moves¢() # £(h)), the zero-order hold or to region E, being above the critical line characterizgthie
always injects energy into the system: slopeénax. In these regions the total energj is a Lyapunov
™1 function.

: 1
Eg:(h,m1) = / [&(T)—E(m)]&(T)dT = 5 (&(m) = £(h))? Sec! 1lI-B discusses the resulting regions in the parameter
h (43) space. Here we simply note that the viscosityprovides
The quantization errorp is a purely positional function, dissipation proportional to the square of the velocity,cedimg

without explicit time dependence. From (32) we see: generation due to discretization. This effect is most rai¢\at
high speeds. At lower speeds, Coulomb frictierdominates
Eyq(h, 1) = (p(h) — 1) (Lg(ﬁ)J — L§(h)J)+ with dissipation proportional to velocity and cancels gene

5 tion due to quantization. Of course, the two effects maysassi
— %(p(ﬁ) — p(h)) (44) each other, for speeds below the maximum velogity, (15),
Coulomb dissipation can help viscosity to dissipate thegne

which, according to previous discussion, can be eithettigesi que to time discretization.
or negative. Since and [¢] are independent quantities, it is For regions C and D the energy balance allows only to
possible to maximizet,, with respect top(h) and p(71): conclude that there exists a system trajectory for whichggne

1 can be generated at any time. The worst case approach does
Egq(h, 1) < 5‘ L&(m)] — Lf(h)J’ (45)  not provide a formal instability condition. In region B, egg
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may be generated for small velocities but is dissipated fahich, recalling|(13), leads to the expanded criterion:
faster motions, thus preventing diverging behaviors. Adae 1 .

worst case approach can not provide formal conditions,Haut t &, (ﬁ - = = TD) + (a — = — Lmax(Th + TD)) >0 (61)
describing function method in Sec. VIl confirms the exiseenc 2 2

of persisting oscillations. We see thatp introduces additional phase lag that counters
viscous dissipation. Furthermore, the delayed applinatb
D. Energy Generation and Balance for 7p > 0 the quantized control force requires additional Coulonit- fr

In the case of delayed force feedback, additional effeciQn t0 Prevent sudden acceleration at low velocity.
must be considered in the computation of energy generation.
First, we note the convenient integration extremaand VIlI. DESCRIBINGFUNCTION ANALYSIS

are:
(52) The energy analysis outlined in Séc.| VI allowed us to find

o=l:=h+T1 T EI+1 iy ;
0 b el [ a worst-case condition to ensure that energy generatiortodue

In this interval the actuated force is constagty(7) = the digital nature of the virtual wall is always dominated by

—|&(h)]—1/2. Therefore, by splitting the contributions of timethe intrinsic dissipation of the device.

discretization and quantization, we have: In contrast, describing functions [22] provide a simple and
1 . powerful tool to analyze the system behavior in the “avetage

Eyz(l,71) :/l [£(7) — &(M)]e(r)dr case and provide estimates of the amplitude and frequency

. , of the self-sustained oscillations (limit cycles) predittin

_ =t (5(71) _ 5([)) n (g(l) _ g(h)) (5(71) — () Flg._@. Moreover, since we can examine the stability of these
53) oscillations as well, it is possible to use it to estimate the
( boundary on thég, o) parameter plane between unstable and

and: stable behaviors.

. ot v o] 116
YA = M g -
= (p(h) — 1) (L)) — L)+ - s ]
1 2 Device
-5 (p(ﬁ)—p(l)) + (p(l)—p(h)) (p(ﬁ)—p(l)) —
(54) e LS =
where the last term of each expression represents the@uliti ZOH + delays Z)(M)

contribution due to time delay. Fak,. it is straightforward

to obtain the upper bound: Fig. 10. Block scheme considered in the approximate desgrifinction

1 2 analysis: zero-order hold and other time delays are lumpeettieg
Eg:(m) < 5 (6(m) =€) + |60 = &) |e(r) - smg
(55)
while the maximization off (54) with respect gh), p(l) and
p(m1) leads again to:

In the following we will refer to the simplified diagram
description Figl 10, where the dimensionless formulatioh (
is used. In particular, the zero-order hold is approximdied

Eyq(l,m1) < 1‘5(71) - 5(5)‘ (56) @ time delay ofl/2 and then lumped withrp. The encoder
2 is represented by its describing functidn(1/). Note that
Moreover, the mean value theorem can be applied also to:because of the integration required to obtain the posigion
: from the velocity &, the loop transfer function has a low-
‘g(l) B g(h)‘ - TD’€<77)‘ n € [l (57) pass characteristic that justifies the first-order appration
and the energy generated in the delayed case is thus bourifieglved in the application of the describing function nah
by: Let 7, = 1/2+7p be the total loop time delayz(M,w)
1 9 1 _ approximates the nonlinear mapping frgm to £ representing
Ey(l,m) < 5(5(71)75(1)) +<2 +TD|§(7;)|) ’5(71)—5(0‘ the haptic device. From the Nyquist criterion, self-sustéli
(58) oscillations are likely to arise if:
An expression analogous to (51) is finally obtained by com- o 1
paring the energy dissipation evaluated in the time interva G(M,w)e JTLY = _m (62)
(52) and by using (49):

\5(7)|(ﬂfLTD)+(anTD(|g'(n)|f|g'(T)\)) >0 (59) A. Describing function of the device model

2 2
If, according to[(20), a maximum velocity and acceleration If We suppose the existence of a sinusoidal motion of
exist, by usingr —n < 1 + 7p, we have: amplitude M (measured in encoder ticks):

€)= [E(T)] < Emax(T = 1) < max(1 +7D)  (60) {(r) = Msin(wr) M >0, w>0 (63)
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Fig. 11. (a) Nyquist plots without Coulomb friction show thetexistence of
limit cycles at finite frequency for;, > 0. (b) Encoder Describing Function
D(M) (solid) matches, foi\/ < 1, its first term D (M) (dash).

(a) M < 1: stable oscillations (b) M > 1: unstable oscillations

Fig. 12. Contour maps of amplitude and frequency of small (kfg large
(right) oscillations on th€3, o) plane foru = 5.

then the required actuation force is:

pa(T) = —pMw? sin(wr) + BMw cos(wT)+ C. Solution for small amplitude (M < 1)
+osgn(Mw cos(wr))  (64) If we assumeD(M) ~ D, (M), the condition|(62) for the

Assuming thatp 4 is also sinusoidal and neglecting highegXistence of a limit cycle can be rearranged into:
order harmonics [22] we approximate the sign function to { 2 cos(rpw) = i

obtain: .
—7sin(tpw) = fw + WM

(68)

= —uMuw?si B+ 4" M _ _ o
#a(r) Mo sin(wr) + | fw + mM cos(wr) From the first equation, we relate frequency to magnitude via

2
Therefore the device is described by: M= MCOSS—QLM (69)
™
=(M,w 1
G(M,w) = ( ) _ . (66) This admits exactly one solution fav < w/(27;) and

PaMow) - —p? + (ﬁw +4W> states that the amplitude decreases for larger values of the
where ® o (M,w) andZ(M,w) are the Fourier transforms of dimensionless inertia.. Since analytic determination of the
@a(r) and £(7). The dependency on the amplitude is frequencyw is difficult from (68), it is more convenient to
required to capture the nonlinear effect of Coulomb frictio identify the (3, o) parameters necessary to achieve a given

By combining [(68) with[(69) we find:
B. Describing function of the quantization 1 3 -
Since the quantization nonlinearity (22) is static and odd ¢ = §Sin(TLw) - QITWCOS(TLW) w € [0; E[ (70)
with respect tag, D(M) is real and does not depend on the
frequencyw. Under the hypothesis (63), the quantization blockhis describes a line on thes, o) plane. Fig/ 12(a) shows

is approximated by the expression: the set of lines obtained for different values of amplitude
L] and frequency clearly supporting the fact that small amgét
2 YO oscillations can occur only ifc < 1/2. With increasing
2
b(M) = 7rM2 Z ! (67) amplitude), o andw decrease from/2 and ;7 respectively.

Finally, the stability analysis of the Nqust plot showsth
If for the moment we assume no Coulombfnc’uon, the Nyquighese |imit cycles are stable. This type of oscillation was

plots in Fig, 11(a) graph condition (62) without and withalel jetected in Fig/ 8(h) with an amplitude bounded by one
For 71, =0 the condition is satisfied and oscillations can °”|)éncoder tick.

occur at infinite frequency with zero amplitude. With a zero-
order hold or other delays{ > 0) the curves intersect at finite _ _
frequency and amplitude. This confirms that limit cyclesari D. Solution for large amplitude (A > 1)

because of quantization non”neariw, even without Colllom For |arge amp"tudeS, the encoder describing function ap-

friction. proximatesD(M)~1 and [(67) reduces to the classic Nyquist
In Fig. ’T() we see thaD(M) matches its first term criterion. These limit cycles are unstable, i.e. osciflasi above

Dy(M) = 3 for small amplitudes. As\ exceeds unity, a critical value grow unbounded, while smaller oscillagion

D(M) quickly tends to unity. In other words, the quantizagecay. As such, the solutions to (67) determine a stability
tion effects are most relevant for small motions, while thgoundary. In particular, we have:

guantized measurements are good approximations of the real

displacements foi/ > 1. Within the limits of the approximate cos(Tpw) = pw’®

guasi-linear analysid, (62) can be solved in these two aépar do (71)
cases, leading to two different families of oscillations. sin(rw) = fw + M



The first equation forces a solution far< ﬁ independent [2]
of M, while the second leads to:

(sin(TLw) — ﬁw) %[

Positive values ot require3 <7, and, as Fig. 12(b) shows,
the solutions occur only in regions of small viscous frintio 4]
Moreover, if the frequency is sufficiently small to approxit@

cos(Tw) andsin(r w) by their series expansions, we have:

M
o=—F w € [0; (72)

(3]

[5]
w o~ ! (73)

nt37i )

and [(72) becomes: 7]
o= M (r - f) (74)

(8]
The substitutiorlfmaX = Mw, corresponding to the maximum
velocity for sinusoidal oscillations, highlights the siarity
to the critical line separating the stable and unstableoregi
D and E in Fig.[ 3 and 5. With respect to the energeti[go
analysis, [(72) intersects the poift/2+ 7p,0) instead of
(+7p, ). This is consistent with the fact that (19) is
obtained through a worst-case analysis, whilel (75) dessrig™!
the “average” behavior.

Finally, we note that ifu > 72/2 and with M > 1, the [12]
system can be stable only if:

El

(L — B) (75) [13]

> T
o>
4/n
Below this line the Nyquist criterion confirms, within thenlits
of this approximate analysis, that the system is unstable.

(14]

[15]
VIIl. CONCLUSIONS

This work has examined the stability of a haptic display. [16]
relates the inertia, viscous, and Coulomb friction of theicke
to the controller stiffness, sampling rate, encoder reswiy 17
and computational or amplifier delay. The dimensionless ap-
proach highlights critical parameter and identifies digtin
stability regions.

The nonlinear effects of quantization and Coulomb frictiof19]
lead to multiple behaviors categorized as passive, locally
stable, limit cycles and unstable. Of particular imporeaime |,q
the condition of stability that occurs for devices with Ilted
viscous damping. Most current devices fall in this catego&/l]
and violate traditional passivity conditions. But both arsto
case and an average case analysis shows why Coulomb friction
allows them to operate successfully.

) . : — 22]

We hope this work will provide better insights on what pEIl—
formance level can be expected from existing haptic systems
and how to best tradeoff system parameters. We also hope to
inspire better controllers and ultimately improve the dasif
future haptic systems.

(18]

REFERENCES

[1] N. Diolaiti, G. Niemeyer, F. Barbagli, and J. Salisburf passivity
criterion for haptic devices,” inlEEE International Conference on
Robotics and Automation, Barcelona, April 2005, pp. 2463-2468.

12

N. Diolaiti, G. Niemeyer, F. Barbagli, J. K. Salisbury,da€. Melchiorri,
“The effect of quantization and coulomb friction on the sliapdf haptic
rendering,” inWHC ’05: First WorldHaptics Conference.  Pisa, Italy:
IEEE Computer Society, March 2005, pp. 237-246.

T. Yoshikawa, Y. Yokokohji, T. Matsumoto, and X. Zheng, i4play of
feel for the manipulation of dynamic virtual objectsfSME Journal
of Dynamic Systems, Measurement and Control, vol. 117, no. 4, pp.
554-558, 1995.

T. Massie and J. Salisbury, “The phantom haptic intexfac device for
probing virtual objects,” INASME Winter Annual Meeting, vol. 55-1,
New Orleans, LA, 1994, pp. 295-300.

F. Barbagli and J. Salisbury, “The effect of sensor/atdu asymmetries
in haptic interfaces,” inEEE Haptics Symposium, Los Angeles, CA,
March 2003, pp. 140-147.

J. Colgate, P. Grafing, M. Stanley, and G. Schenkel, “Imm@etation of
stiff virtual walls in force-reflecting interfaces,” IrEEE Virtual Reality
Symposium, 1993, pp. 202-208.

J. Colgate and G. Schenkel, “Passivity of a class of sadigia sys-
tems: Application to haptic interfaces,” American Control Conference,
Baltimore, Maryland, June 1994, pp. 3236—-3240.

B. Gillespie and M. Cutkosky, “Stable user-specific reridg of the vir-
tual wall,” in ASME IMECE, vol. DSC-\ol. 58, Atlanta, GA, November
1996, pp. 397-406.

N. Hogan, “Controlling impedance at the man/machine iatezf’ in
Proceedings |EEE International Conference on Robotics and Automa-
tion, 1989, pp. 1626-1631.

R. Ellis, N. Sarkar, and M. Jenkins, “Numerical methods tfee force
reflection of contact,ASME Journal of Dynamic Systems, Measurement
and Contral, vol. 119, pp. 768-774, 1997.

B. Hannaford and J. Ryu, “Time domain passivity control hafptic
interfaces,” inProceedings of the IEEE International Conference on
Robotics and Automation, Seoul, Korea, May 2001, pp. 1863—-1869.
S.Stramigioli, C.Secchi, A. van der Schaft, and C. Fantu’A novel
theory for sample data system passivity, Froceedings of the |EEE/RSJ
International Conference on Intelligent Robots and Systems, Lausanne,
Switzerland, October 2002.

B. Miller, J. Colgate, and R. Freeman, “On the role of giason in
haptic systems,1EEE Transactions on Robotics, vol. 20, no. 4, pp.
768-771, August 2004.

M. Mahvash and V. Hayward, “High fidelity passive forceflecting
virtual environments,1EEE Transactions on Robotics, vol. 21, no. 1,
pp. 38-46, 2004.

J. J. Abbott and A. M. Okamura, “Effects of position quaation and
sampling rate on virtual-wall passivityEEE Transactions on Robotics,
vol. 21, no. 5, pp. 952-964, October 2005.

W. Townsend and J. Salisbury, “The effect of coulomb tivic and
stiction on force control,” inProceedings of the IEEE International
Conference on Robotics and Automation, 1987, pp. 883—-889.

A. van der Schaft,L2-Gain and Passivity Techniques in Nonlinear
Control, ser. Communication and Control Engineering. Springer gerla
2000.

J. Willems, “Dissipative dynamical systems, part i: Gehetheory,”
Arch. Rat. Mech. An., vol. 45, 1972.

C. Zilles, “Haptic rendering with the toolhandle haptinterface,”
Master’s thesis, Massachusetts Institute of Technologyi@idge, MA,
1995.

K. Kuchenbecker and G. Niemeyer, “Modeling induced mastetion in
force-reflecting teleoperation,” iRroceedings of the |EEE International
Conference on Robotics and Automation, Barcelona, Spain, April 2005.
K. Kuchenbecker, J. Park, and G. Niemeyer, “Charadtegithe human
wrist for improved haptic interaction,” iIRSME IMECE International
Mechanical Engineering Congress and Exposition, Washington, D.C.
USA, November 16-21 2003.

J. Slotine and W. LiApplied Nonlinear Control.
NJ: Prentice Hall, 1991.

Englewood Cliffs,



Nicola Diolaiti (S '02) received the M.Sc. degree
cum laude in electrical engineering from the Uni-
versity of Bologna, Italy, in July 2001. In 2005, he
received the Ph.D. degree in Control Engineering
from the same University. In the context of the EU-
sponsored project, in 2003 he visited the Drebbel In-
situte at the University of Twente, The Netherlands,
developing modeling and estimation techniques for
contact dynamics in the port-Hamiltonian frame-
work. In 2004 and 2005 he was appointed visiting
scholar at the Stanford Al-Robotics Lab, CA, USA.
His research activity is focused on the modeling and contegeets of
interactive robotic systems with particular emphasis onidiéd teleoperation
devices and haptic interfaces.

Giinter Niemeyer (M '02) is an assistant professor
in Mechanical Engineering at Stanford University
and directs the Telerobotics Lab. His research ex-
amines human-robotic interactions, force sensitivity
and display, and teleoperation. Medical devices, in
particular telesurgery, form a primary application.
His work also addresses haptic feedback and the
effects of delayed or network transmissions on user
perception, both in training, simulation, and oper-
ation. Dr. Niemeyer received his M.S. and Ph.D.
from MIT in the areas of adaptive robot control and
bilateral teleoperation, introducing the concept of waegiables. He also
held a postdoctoral research position at MIT developingjisat robotics.

In 1997 he joined Intuitive Surgical Inc., where he helpegate the daVinci
Minimally Invasive Surgical System. This telerobotic systemables surgeons
to perform complex procedures through small (5 to 10mm) incssigsing an
immersive interface and is now being used at over 200 hospitatklwide.

He joined the Stanford faculty in the Fall of 2001.

Federico Barbagli (M '01) received his Master of
Computer Science from the University of Bologna,
Italy, in 1998, and his Ph.D. in Robotics from Scuola
Superiore S.Anna, Italy, in 2002. In 2001 and 2002,
he was a visiting researcher at the Stanford Robotics
Lab. Between 2002 and 2004 he was an Assistant
Professor at the University of Siena, Italy, and a
Post Doctoral Fellow at Stanford University. In 2004
Federico moved back to the Bay Area full time. He
joined Hansen Medical, a medical robotics startup,
as a Senior Haptics and Visualization Engineer,
while still collaborating with the Stanford Robotics Laba&esearch Fellow.
He’s one of the founding members and architects of the chaiBjqir

J. Kenneth Salisbury, Jr.is a member of the faculty
at Stanford University in the departments of Com-
puter Science and Surgery. His research interests
include robotics, haptics, human-machine interac-
tion, collaborative computer-mediated haptics, and
surgical simulation. Salisbury received a Ph.D. in
mechanical engineering from Stanford University.
Among the projects with which he has been asso-
ciated are the Stanford-JPL Robot Hand, the JPL
Force-Reflecting Hand Controller, the MIT Whole
Arm Manipulator, and the Black Falcon Surgical
Robot. His work with haptic interface technology led to theuriding

of SensAble Technologies, producers of the Phantom hapterface and
FreeForm software. He was a scientific adviser to Intuitivegigal, where
his efforts focused on the developing dexterity- enhantétgrobotic systems
for surgeons. He has served on the National Science Foondafidvisory
Council for Robotics and Human Augmentation, as scientificisetvto
Intuitive Surgical, and as technical adviser to Robotic tWess

13



	Introduction
	Problem Statement
	System Description
	Dimensionless Parameterization
	Stability Approach

	Main Results
	Dissipation Criterion for Zero Delay (D=0)
	Stability Regions
	Interpretation
	Extension to Delayed Feedback

	Simulations
	Experimental Results
	Energetic Analysis of Digital Springs
	Storage function of a quantized spring
	Energy Dissipation
	Energy Generation and Balance for D=0
	Energy Generation and Balance for D>0

	Describing Function Analysis
	Describing function of the device model
	Describing function of the quantization
	Solution for small amplitude (M<1)
	Solution for large amplitude (M>1)

	Conclusions
	References
	Biographies
	Nicola Diolaiti
	Günter Niemeyer
	Federico Barbagli
	J. Kenneth Salisbury, Jr.


