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Abstract
One of the most important advantages of computer simulators for surgical training is the opportunity they afford for
independent learning. However, if the simulator does not provide useful instructional feedback to the user, this advantage is
significantly blunted by the need for an instructor to supervise and tutor the trainee while using the simulator. Thus, the
incorporation of relevant, intuitive metrics is essential to the development of efficient simulators. Equally as important is
the presentation of such metrics to the user in such a way so as to provide constructive feedback that facilitates independent
learning and improvement. This paper presents a number of novel metrics for the automated evaluation of surgical
technique. The general approach was to take criteria that are intuitive to surgeons and develop ways to quantify them in
a simulator. Although many of the concepts behind these metrics have wide application throughout surgery, they have been
implemented specifically in the context of a simulation of mastoidectomy. First, the visuohaptic simulator itself is
described, followed by the details of a wide variety of metrics designed to assess the user’s performance. We present
mechanisms for presenting visualizations and other feedback based on these metrics during a virtual procedure. We further
describe a novel performance evaluation console that displays metric-based information during an automated debriefing
session. Finally, the results of several user studies are reported, providing some preliminary validation of the simulator,
the metrics, and the feedback mechanisms. Several machine learning algorithms, including Hidden Markov Models and
a Naı̈ve Bayes Classifier, are applied to our simulator data to automatically differentiate users’ expertise levels.

Keywords: Simulation, metrics, feedback, performance evaluation, mastoidectomy, validation

Key link: http://jks-folks.stanford.edu/bonesim

Introduction

One of the most important advantages of computer

simulators for surgical training is the opportunity

they afford for independent learning. Unlike the

anatomy lab or operating room, a simulator allows

a student to practice at his/her convenience,

regardless of the availability of cadavers or patients.

Since all data about the environment and the user’s

actions may be recorded, a sufficiently realistic

computer simulation would provide the opportunity

to develop objective metrics that may more

fairly evaluate a student’s performance in a

competency-based curriculum than subjective

instructor ratings. However, if the simulator does

not provide useful instructional feedback to the

user, its educational value is significantly reduced,

requiring an instructor to supervise and tutor the

trainee while using the simulator. In fact, the

continued need for instructor feedback with most

existing simulators is often cited as a primary reason

for the reluctance of many medical schools to fully

embrace simulator technology [1]. Thus, the

incorporation of relevant metrics is essential to the

development of efficient simulators that provide

convenience for trainees while minimizing the costs
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8 associated with instructors directly supervising

training. Equally important is the presentation

of such metrics to the user in such a way so as

to provide constructive feedback that facilitates

independent learning and improvement. The simu-

lator should serve not only as a ‘‘grader’’ but also as

an ‘‘intelligent tutor.’’

In this paper, we present a number of

novel metrics and feedback mechanisms for the

automated evaluation of surgical technique.

They have been implemented in the context of a

simulation of mastoidectomy, a surgical procedure

that involves drilling away part of the temporal bone

in order to gain access to the inner ear. While the

examples given in this paper are based on our

mastoidectomy simulator, many of the principles

behind the metrics and their presentation to the user

should generalize well to many other procedures

and simulators.

The remainder of this paper is organized as

follows. The next section provides a review

of related work on performance evaluation in

surgical simulation. This is followed by a brief

description of our mastoidectomy simulator.

The subsequent section describes a variety of

metrics intended to evaluate a user’s performance

on the simulator, and is followed by a presentation

of mechanisms for providing feedback to the user

based on these metrics, both interactively in the

simulator while performing the virtual procedure,

and afterwards in an automated ‘‘debriefing’’

session using a novel performance evaluation

console that highlights problem areas and details

how to correct them. The penultimate section

reports the results of several studies that were

conducted to provide some preliminary validation

of the simulator, the metrics, and the feedback

mechanisms, making use of both user studies and

machine learning algorithms. Finally, conclusions

and future work are suggested.

Related work

The economics [2], efficiency [3], reliability [4],

effectiveness, degree of responsibility, and ethics [5]

of the traditional ‘‘apprenticeship’’ model of surgical

training, in which assessment of proficiency is based

on the subjective impressions of the surgical

educators, have come into question in recent

years, particularly for physicians in the early stages

of training. To address these challenges, some

surgical educators have moved toward enhancing,

or perhaps replacing, the apprenticeship model with

a competency-based curriculum [6]. OSATS

(Objective Structured Assessment of Technical

Skill, University of Toronto, Toronto, Canada)

has gained popularity as a means to move towards

objective assessment, and Reznick et al. demon-

strated its construct validity [7]. Within a compe-

tency-based system, proficiency is determined by

successive mastery of skills as opposed to a

prescribed length of training. Mastery is assessed

not only by the subjective assessment of the

surgeons that are responsible for training, but also

by objective and standardized assessment tools.

Trainees may be required to meet a rigorous

standard of proficiency before being allowed to

enter the workforce. Thus, there has been an

increasing interest in incorporating objective metrics

into surgical simulators.

Several basic metrics, such as the number of

collisions between a user’s tool and simulated

anatomy, task completion time, and efficiency of

movement, are reported by several existing endo-

scopy simulators, including MIST-VR (Minimally

Invasive Surgery Trainer – Virtual Reality, Mentice

Medical Simulation, Gothenburg, Sweden),

MISTELS (McGill Inanimate System for Training

and Evaluation of Laparoscopic Skills, McGill

University, Montreal, Canada), ES3 (Endoscopic

Sinus Surgery Simulator, Lockheed Martin,

Bethesda, MD), and the Upper GI Endoscopy

Simulator (5DT Inc., Santa Clara, CA). Recently,

the ETH-Zurich Hysteroscopy Simulator has incor-

porated metrics for percentage of surface area

visualized, amount of distension fluid used, task

completion time, number of wall collisions, and

path length [8]. Several researchers have attempted

to define a standard set of metrics for laparoscopic

skill trainers. Cotin et al. detailed five critical

kinematic parameters: time to completion, path

length, motion smoothness, depth perception, and

response orientation [9]. A few simulators for non-

endoscopic procedures, including CathSim

AccuTouch (Immersion Medical, Gaithersburg,

MD) and the E-Pelvis (Stanford University,

Stanford, CA), also provide some metrics.

Several researchers have attempted to classify

users of simulators or instrumented surgical robots

as ‘‘expert’’ or ‘‘novice’’ by applying machine

learning algorithms to data recorded during their

performance of certain procedures. Rosen et al.

affixed force and torque sensors to instruments used

in cholecystectomies and Nissen fundoplications on

porcine models [10]. Based on the continuous data

stream consisting of three-dimensional (3D) forces,

rotational torques, and grip force, a vector quantiza-

tion algorithm was used to group data into clusters,

each with one of 14 pre-defined force/torque profiles

indicative of a particular action state. Markov

Models were developed independently for a group

64 C. Sewell et al.
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8 of novices and a group of experts. A new Markov

Model was developed for each user and compared

to the novice model and to the expert

model according to a simple measure of statistical

similarity. Of 24 procedures performed by four

subjects, 87.5% were correctly classified. Dosis

et al. took data using ICSAD (Imperial College

Surgical Assessment Device, Imperial College of

Medicine, London, UK) during a laparoscopic

suturing task, and directly from the da Vinci robotic

surgery system (da Vinci Surgical System, Intuitive

Surgical, Sunnyvale, CA) during robotic suturing

and rope passing tasks. They defined 18 states based

on characteristic XY-plane rotations, elevations,

and grip states, and attempted to recover the

hidden states of a Hidden Markov Model (HMM)

using Baum-Welch optimization. The recovered

states were compared to the sequence of states

identified by expert surgeons watching video of the

procedures. Results were good for the laparoscopic

suturing task, but unsatisfactory for the robotic

suturing and rope passing tasks [11]. Mackel et al.

constructed expert and novice instances of

a 32-state HMM, with each state corresponding to

one of the 25 possible combinations of currently

activated pressure sensors in the E-Pelvis,

and used them to successfully classify 92% of

82 subjects [12]. Murphy et al. at Johns Hopkins

collected detailed motion data from the da Vinci

system and achieved successful classification rates

of approximately 85% using HMMs and linear

discriminant analysis [13]. They also decoded the

HMMs to recognize individual motion states.

Nevertheless, all of these metrics give an incom-

plete assessment of user performance. Some, such

as task completion time, have been explicitly

demonstrated to be a poor measure of skill [14].

Most assume a simple global optimum value, such

as a minimal number of wall collisions, a minimal

path length, or a minimal completion time. They

do not consider quantities (such as forces and

velocities) whose ideal values may vary in relation

to changes in conditions such as tool proximities

to anatomic structures, and do not analyze

expert performance to learn the nature of such

dependencies. Many important elements of good

surgical technique have not yet been explored,

including proper exposure and identification

of anatomic structures, maintenance of proper

visibility of the surgical field, and proper drilling

and suctioning technique.

Perhaps most importantly, while some work

has explored the use of metrics for quantitative

evaluation, there has thus far been little focus on

the development of mechanisms for providing

constructive feedback that may lead to improved

performance based on such metrics. For example,

determining that a Hidden Markov Model classifies

a user’s performance as ‘‘novice’’ or that the user’s

path efficiency score is a 75.6 may well have

significant value for grading and certifying potential

surgeons. However, it tells the user very little about

how to improve his/her performance.

The learning theory community has demon-

strated that allowing a person to review a video of

his/her performance is insufficient in itself to

facilitate learning, but that video feedback with

cuing (directing attention to the most relevant

aspects of the video) can be very valuable [15,16].

Several studies, including those by Feygin et al.

[17], Yang et al. [18], Morris et al. [19], and

Kahol et al. [20], have explored the use of real-time

visual feedback (usually in the form of 1D or 2D

graphs comparing the current value of some

parameter such as force magnitude to a specified

ideal value) and/or haptic feedback (usually directly

applying the force to be learned to the user) for

teaching generic gestures. This has recently begun

to be applied to teaching surgical gestures [21]. The

ETH-Zurich Hysteroscopy Simulator has recently

added the ability to present the user with a report

after completion of the procedure that highlights

surface patches not visualized during the procedure

in red, and displays a line tracing the path of the

endoscope that is colored red when in collision with

the uterine wall and green when a safe distance

from the wall [8]. Silverstein et al. generated arc

graphs that visualized average pressures applied by

experts and by novices to each of the pressure

sensors in the E-Pelvis [22]. The positions of the

arcs corresponded to the physical locations of

the corresponding sensors, and bands within the

arcs used color brightness to show pressure variation

over time, in order to facilitate understanding of the

difference in the performance of the two groups.

The simulator

Mastoidectomy was chosen as a test-bed for our

metrics development due to the suitability of the

dynamic range of forces and the size of the surgical

field to the capabilities of existing haptic hardware;

the need for computer simulation to teach haptic,

anatomic, and cognitive aspects of this surgery

which cannot be taught by drilling cadaver bones

(the current modality of pre-operative instruction

for otology residents); the fairly high risk of

morbidity due to the proximity of nerves and

blood vessels; and the available opportunities for

collaboration with surgeons and residents in this

field.

Metrics and feedback in a surgical simulator 65
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simulation of temporal bone surgery. Agus et al.

[23] have developed an analytical model of bone

erosion as a function of applied drilling force and

rotational velocity, which they have verified with

experimental data [24]. Pflesser et al. [25] and

Petersik et al. [26] modeled a drilling instrument as

a point cloud, and used a modified version of the

Voxmap-Pointshell algorithm [27] to sample the

surface of the drill and generate appropriate forces

at each sampled point. This work has also

been incorporated into a commercial simulator

(Voxel-Man TempoSurg, Spiggle & Theis,

GmbH, Overath, Germany). Bryan et al. have also

developed a simulator for temporal bone surgery

[28], and Stredney et al. integrated a simple

tutor into the system, helping the user to identify

relevant anatomy [29]. Each of these projects has

incorporated haptic feedback into volumetric simu-

lation environments that make use of CT and MR

data and use volume-rendering techniques for

graphical display.

We have presented the details of our mastoidect-

omy simulator in reference [30]. In the simulator,

a hybrid data structure is maintained that allows

computation of appropriate drill forces using

rapid collision-detection in a spatially discretized

volumetric voxel representation while graphically

rendering a smooth triangular mesh that is modified

in real time as the voxels are drilled away. The voxel

representation may be generated either from surface

meshes drawn by hand in a modeling program such

as Maya, or from bitmap stacks produced in

a program such as Amira from CT DICOM data.

A new triangular mesh is then generated over this

voxel mesh, with each voxel a potential vertex.

Initially, the isosurface consists of triangles joining

all sets of three mutually adjacent voxels on the

surface of the bone. When a voxel is removed, all

triangles containing the vertex at that voxel are

removed, and all of its neighbors are checked to see

if any have now become surface voxels; if so, new

triangles are created with that voxel and each pair of

its neighbors (that are also neighbors of each other)

on the surface. The partial transparency of the bone

is modeled by shading voxels near underlying

structures (using the structure’s color or texture

and with intensity inversely proportional to

distance) when the ray from the current viewpoint

through the voxel intersects the structure.

The primary component of the haptic feedback is

computed by first discretizing the drill burr into a

voxel grid (at a finer resolution than the bone grid).

A preprocessing step computes an occupancy map

for the tool’s voxel array. At each interactive

timestep, each of the volume samples in the burr

is checked for intersection with the bone volume

(a constant-time, integer-based operation using

a hash table). A sample point that is found to lie

inside a bone voxel generates a unit-length con-

tribution to the overall haptic force vector that tends

to push this sample point toward the tool center,

which – with adequate stiffness – is always outside

the bone volume. The overall force generated by our

approach is thus oriented along a vector that is the

sum of the ‘‘contributions’’ from individual volume

sample points. The magnitude of this force

increases with the number of sample points found

to be immersed in the bone volume. Additional

algorithms modify this force by accounting for other

effects, including a multi-gain function in which

the magnitude of haptic feedback is a nonlinear

function of the number of immersed sample points

(to increase stiffness while maintaining stability

upon initial contact), removal rates that vary

depending on drill ‘‘latitude’’ (since the drill spins

faster around the equator than at the poles),

vibrations that vary based on bone thickness

(based on data recorded using accelerometers in

the cadaver lab), and tangential forces (modeling

variations depending on the direction of spin of the

burr’s flumes).

Realistic drill sounds, based on data recorded

while drilling cadaver temporal bones, are pro-

duced, with frequencies giving cues to bone depth.

Other features include particle simulations of bone

dust, blood, and irrigation (each of which can be

removed using a suction controlled by a second

haptic device); shadows; detailed anatomical models

of surrounding structures and of the inner ear;

stereo graphics using a Cyberscope (Simsalabim

Systems, Berkeley, CA) split-screen mirror system;

bimanual collocated haptic devices (one usually

used for the drill and the other for the suction);

and an interface for switching between tools and

maneuvering the view point. The simulator is

networked, allowing a user at one computer to

observe another user on a different computer, to feel

the forces being applied in the simulator on the

remote computer, or to collaboratively drill

along with the other user. At the bottom of the

screen is a neurophysiology monitor, providing

realistic feedback regarding nerve response.

Metrics

This section briefly describes the metrics that were

developed in order to evaluate user performance on

our simulator. The general approach was to take

criteria that are intuitive to surgeons and develop

ways to quantify them. The metrics are numbered as

66 C. Sewell et al.
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8 listed in Tables III and IV. The numerical

‘‘threshold’’ values given in the subsequent descrip-

tions and used in the validation study are based on

our informal adjustments using training data

and feedback from surgeons, but are all

easily modifiable within our performance evaluation

console. The details of the implementations are

discussed more fully in references [31–33].

Visibility

One of the most important ways in which risk is

minimized in temporal bone surgery is by taking

care to only remove bone that is within the line

of sight, using a ‘‘saucerizing’’ drilling technique

(removing bone so as to create a saucer-shaped

cavity on the bone surface). This enables the

surgeon to avoid vulnerable structures just below

the bone surface, using subtle visual cues that

indicate their locations. If instead some bone is

removed by ‘‘undercutting’’ (drilling beneath a shelf

of bone that obscures visibility), these cues may not

be seen, increasing the risk of damaging critical

underlying structures (Figure 1A). Thus, Metric

1 reports the percentage of voxels that were removed

while maintaining proper visibility. To determine

whether a voxel being removed is within the current

field of view, a line is simply traced from the voxel to

the viewpoint. Points at discrete intervals along this

line are tested for intersection with any obstructing

object: the voxel mesh (excluding voxels covered by

the drill burr) by indexing into the voxel mesh hash

table, soft-tissue anatomy surface meshes by traver-

sing an axis-aligned bounding box hierarchy, and

(optionally) any accumulated bone dust by directly

indexing into the particle grid.

Drilling and suctioning technique

Good technique in performing a mastoidectomy

also involves proper handling and coordination of

the surgical instruments. During most of a proce-

dure, the surgeon will hold a drill fitted with one of

several burr types in one hand and a suction device

in the other. An expert will tend to make smooth,

purposeful movements with the drill, drill primarily

with the side of the burr rather than the tip, and

select burr types and sizes appropriate for use in

different regions of the bone. The suction device is

used for removing dust and fluid from the surgical

field to maintain visibility of the bone surface, and

may also provide irrigation to cool the bone surface

as it interacts with the rapidly moving drill burr.

An expert will tend to keep the field relatively free of

debris and will keep the suction device close to the

drill as bone is removed.

Metric 2 reports the percentage of voxels

removed using a 6-mm drill burr when more

than 75% of experts used a 3-mm burr for that

voxel, since using a large burr is dangerous near

certain structures (while using a small burr in safe

areas can prolong the procedure). Metric 3 reports

the frequency of drill ‘‘jumps’’: the number of

removed voxels per thousand that were more than

1 cm away from the previously removed voxel,

since smooth, continuous drill strokes reflect

expertise and confidence. Metric 4 reports the

mean deviation from 90� of the angle between the

generated force vector and the primary drill axis,

Figure 1. A. The surgeon is not maintaining proper visibility of the drilling region because it is obstructed by a shelf of
bone, and will be unable to see that he/she is nearing the facial nerve. B. Correct exposure of the facial nerve has been
achieved, as all but a thin layer of bone has been removed above it.

Metrics and feedback in a surgical simulator 67
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8 since drilling with the side of the burr is more

efficient and reliable than using the tip. Metric 5

reports the percentage of voxels removed with the

drill and suction more than 2 cm apart, since the

suction should be kept near the drill to remove

obscuring dust and provide irrigation. Metric 6

reports the percentage of voxels removed while the

surgical field was obscured by more than 300 bone

dust particles, since this can reduce visibility.

Bone removal

One of the most obvious criteria for the evaluation

of a mastoidectomy is whether correct decisions

were made as to which regions of bone to remove

and which to leave intact. A simple method for

evaluating this is to have an instructing surgeon

label the regions that should and should not be

removed, or to automatically label the voxels drilled

away by the instructor, and then compare the set of

voxels removed by the trainee to this model.

However, there is not necessarily a single correct

technique; different experts may make somewhat

different choices as to which bone to remove, and

a given expert may vary somewhat between runs.

In addition, not all regions are of equal importance;

in some regions, it does not matter much exactly

what is removed, while the choices may be much

more critical in other areas, especially near nerves

and other critical structures.

Thus, a Naı̈ve Bayes classifier (with Laplace

smoothing) was constructed to calculate the max-

imum likelihood estimates for the probabilities that

each voxel is removed by an expert and by a

novice, based on training data recording during

virtual mastoidectomies performed by users of

known skill level. Similar to how many spam

classifiers use this algorithm based on the assump-

tion that words in an e-mail are chosen for

inclusion based on different distributions by

spammers and non-spammers, this metric is

based on the assumption that voxels are chosen

from the bone voxel mesh ‘‘dictionary’’ for removal

according to different distributions by experts and

novices. This classifier can then be used to

determine the probabilities that a given mastoi-

dectomy was performed by an expert or by a

novice. Since the bone mesh is so large, and so

many voxels are unlikely to be very informative

(i.e., they will almost always be removed or not be

removed, regardless of the subject’s expertise), we

calculated the mutual information (equivalent to a

Kullback-Leibler divergence) for each voxel and

built the classifier using only the 1000 most

informative voxels in order to optimize the speed

and accuracy of the classifier. Metric 7 reports the

mean of the expert removal probabilities for all

voxels removed by the user. Metric 8 reports the

sum of the number of voxels with expert prob-

ability over 0.8 not removed by the user and the

number of voxels with expert probability under 0.2

that were removed by the user.

Exposure

Another essential component of good surgical

technique is achieving proper exposure of critical

anatomic structures so that their shapes, which may

vary somewhat among patients, can be confidently

established and avoided. In the context of a

mastoidectomy, achieving proper exposure involves

drilling until only a thin layer of bone remains over

vulnerable structures (such as the facial nerve,

sigmoid sinus, and dura). When the layer of bone

is sufficiently thin, the structure can be seen, due to

the partial transparency of the bone. However, the

bone must not be completely removed, as this

would result in severe trauma to these vulnerable

structures. Although it is usually not necessary to

directly expose an entire structure, many structures,

such as nerves and blood vessels, twist and turn in

unpredictable ways, so it is imperative to expose

enough of a structure (and in the right places) such

that its entire shape (within the surgical field) can be

confidently inferred (Figure 1B). Therefore,

Metric 9 reports the percentage of the facial nerve

that has been properly exposed, Metric 10 the

percentage that has either been directly exposed or

can be inferred from the directly exposed area, and

Metric 11 the percentage that has been over-

exposed. Direct exposure and overexposure may

be computed for each vertex of a surface mesh

representing the structure, similar to how visibility is

determined for removed bone voxels. If no bone

voxels are intersected between the vertex and the

viewpoint, the point is overexposed; if some voxels

are intersected within a small threshold distance

from the vertex but none beyond this distance, it is

properly exposed. These calculations must be

repeated whenever the viewpoint is moved, and

generally only the upward-facing surface of the

structure need be considered. Inferred exposure is

calculated by taking each directly exposed vertex as

a source and propagating a front from it (viewing the

surface mesh as a graph) similar to Dijkstra’s

Algorithm, adding vertices to the inferred list until

the distance (along the surface) from the source to

the candidate vertex is too long or the curvature too

great.

68 C. Sewell et al.
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Forces and velocities

A hallmark of safe drilling technique is applying

appropriate forces and operating the drill at appro-

priate velocities. The acceptable range of forces and

velocities is closely related to the drill’s distance

from vulnerable structures. As a good surgeon gets

closer to certain vulnerable anatomic structures,

such as the sigmoid sinus, the dura, the facial nerve,

or the inner ear, he/she drills more carefully. This

increased caution may be reflected in such para-

meters as decreased drill forces and decreased drill

velocities. Changes in these quantities as a function

of distance from these structures indicate that the

surgeon recognizes the landmarks indicating that

he/she is nearing a vulnerable structure, and is

responding appropriately (Figure 2).

Metric 12 reports the percentage of voxels

removed while applying a drill force magnitude

above 0.2N (using a sliding-window average over

20 milliseconds), as pushing too hard could result in

popping through bone and harming underlying

structures. Metrics 13 through 16 report the

percentage of voxels within 1 cm of, respectively,

the dura, sigmoid sinus, facial nerve, and inner ear

that were removed while applying a drill force above

0.2N, since it is especially critical to be careful

around these. Metric 17 reports the percentage

of voxels removed while moving the drill faster

than 2 cm/s (using a sliding-window average over

20 milliseconds), since moving too quickly can

result in a loss of control. Metrics 18 through 21

report the percentage of voxels within 1 cm of,

respectively, the dura, sigmoid sinus, facial nerve,

and inner ear that were removed while moving the

drill faster than 2 cm/s.

Feedback mechanisms

The utility of all the metrics described in the

preceding sections is maximized if they are visua-

lized for the user in a format that clearly highlights

the user’s strengths and weaknesses and draws

attention to problem areas. Therefore, we have

developed a number of mechanisms for providing

informative feedback to the user based on these

metrics. The metrics console described in this

section is illustrated in Figure 3.

Figure 2. Force magnitudes applied by experts and novices as functions of distance from the facial nerve. Data points
were sorted into bins of width 0.2 cm based on distance from the structure. The means of each bin are plotted, along with
error bars showing standard deviations within the bins. The data was collected in the user study described in the Validation
section. Experts applied smaller forces than the novices and decreased their forces as they approached the facial nerve.
[Color version available online.]
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Data logging and video rendering

When a user performs a virtual mastoidectomy on

our simulator, all of the data relevant to the user’s

actions is recorded to a file. Samples are taken at

millisecond intervals and logged to disk using a

blocked linked list data structure that prevents race

conditions between the haptics thread that is

producing data and a separate, higher latency

disk I/O thread that consumes the data [34]. This

data includes the current time, the position and

orientation of both tools and the viewpoint, and

indices indicating the identity of the currently

selected tool in each hand. If a drill is currently

selected, the force vector being applied to the drill,

the velocity vector of the drill, the power setting of

the drill, and the currently selected drill burr type

are also recorded. If a suction is currently selected,

its power setting is recorded. Additional samples

are logged each time a voxel of bone is removed by

the drill, recording, in addition to the previously

described fields, the index of the removed voxel

and its surface normal.

A data file can be loaded and replayed directly

in the simulator. In this mode, ‘‘user input’’,

specifically the positions and orientations of the

tools and button states, is read from the file rather

than from the haptic devices, while everything else,

such as collision detection, computation of bone

removal, and re-triangulation of the bone isosurface,

is computed just as in the interactive simulation.

During this replay, the images from the viewport

may be written to an AVI movie file using

public domain Cþþ AVI utilities by Lucian

Wischik [35].

Reconstructing the model

After a virtual mastoidectomy has been performed

and recorded on the simulator and rendered to

video, it may be loaded into the metrics console for

detailed analysis and visualization of metrics. When

a simulation data file is selected for loading into the

console, several different types of files are opened.

In addition to the simulator data file and the

associated AVI video file, the same models used to

Figure 3. An overview of the metrics console. A video is replaying in the left panel in sync with a model reconstruction of
the virtual environment in the right panel. The currently selected metric is amount of accumulated bone dust. An interval
of relatively high accumulation is being viewed, as shown by the frame position scroll bar located below a peak in the graph
of the time variation of the currently selected metric (red dots). [Color version available online.]
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represent the bone and surrounding anatomy during

simulation are read in by the metrics console. This

allows all of the anatomy present in the simulator to

be reconstructed visually in the metrics console.

Both the simulator and console make use of the

CHAI haptic libraries [36].

As the procedure is reviewed (see Replaying the

procedure below), the user can rotate, translate, and

zoom his/her view of the reconstructed anatomy,

as well as select any structure or combination of

structures to ‘‘cut away’’, providing informative and

customizable views that were not seen during the

interactive procedure and are not available with only

a recorded video. A button is also provided to easily

reset the view to align with that used in the original

procedure.

Pre-computing metrics

After a simulation data file has been loaded, the

complete procedure is immediately replayed once

internally while computing all of the metrics. No

rendering is done during this process, so the speed

is not limited by graphics I/O, and, since no

output is provided to the user during this pre-

computation step, it can be ‘‘replayed’’ in much

less time than the actual procedure took.

Furthermore, since all the metrics use only the

voxel representation of the bone, the costly re-

triangulations of the isosurface used for graphical

rendering that are normally performed whenever a

voxel of bone is removed need not be computed

during this phase.

The time required for the pre-computation of

metrics is typically 15 to 20 seconds on our dual-

processor 3-GHz machine. The exposure metrics

are the most costly, as shown in Table I. All results

are stored, so the metrics do not need to be

recalculated during the user’s subsequent interac-

tive review of the procedure, allowing for faster

refresh rates.

Replaying the procedure

Once all of the data has been loaded and the metrics

computed, the user may replay the recorded

procedure in the console. There are two display

panels adjacent to one another, and the user may

select to watch either the video or reconstructed

model in either. The latter type of view may be

rotated, translated, and zoomed using the mouse

and may show either the unaltered models or be

enhanced with metric-specific visualizations

as described in the next section. Both views play

in sync with one another. In addition to real-time

playback, features such as fast-forwarding, rewind-

ing, slow motion, and scrubbing are available using

a frame-selection scroll bar below the display panels

and a playback-rate slider control.

The AVI video file, generated as described in the

Data logging and video rendering section above, is

shown using a QuickTime ActiveX control

embedded in the Microsoft.net form. This control

allows for scrubbing (i.e., immediate frame updates

as the frame-selection scroll bar is dragged), which

facilitates fine control over playback rate and quick

overview of the procedure.

The limiting factor in updating the model

reconstruction during scrubbing or fast-forwarding

is the time required to update the isosurface as bone

is removed. However, our program takes advantage

of the fact that this triangulation is a ‘‘state

function’’ in that it depends only on which voxels

are currently active and not on the order of removal

of previously active voxels. Therefore, voxels are

‘‘queued for removal’’ as they are drilled away, but

the costly re-triangulation of the mesh is only

performed once per frame update, regardless of

how many voxels were removed since the previous

frame. This prevents many triangles involving voxels

that are neighbors of a removed voxel, but are

themselves later removed, from ever being gener-

ated. When fast-forwarding, re-triangulating only

once each frame eliminates even more intermediate

Table I. Time taken by different tasks when opening the performance evaluation console.
The times given are averages based on 32 data files collected in the user study described in
the Validation section.

Time Time

Actual procedure 844 Exposure 8.34

Total startup time 38.5 Direct and overexposure 7.89

Load anatomy 15.2 Inferred 0.446

Read data file 6.01 Visibility 0.845

Compute metrics 17.2 All other metrics 0.0604

Mesh collisions 4.46 Building metric graphs 0.0211

Bone dust 2.79 Reset simulation 0.0772
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recomputed for surface voxels in the vicinity of

removed bone once per frame.

Each recorded data packet contains the actual

elapsed time during the procedure at which it was

recorded. When playing at normal speed, during

each iteration of the rendering loop, all data

packets since the last render are processed (without

updating the isosurface) up until the first packet

with time greater than the current replay time. The

current replay time is maintained by storing the

simulation time when play was most recently

resumed and adding this to the elapsed time

since then using a high-precision timer. (This

elapsed time may be scaled to allow variable

playback rates.) At the end of this iteration, any

necessary updates are then made to the isosurface.

Rewinding is accomplished by first resetting the

triangulation and all other states (such as bone

dust accumulations) to their initial states (which

are saved after the initial triangulation and other

set-up is completed when loading the files at the

beginning of the session) and then fast-forwarding

to the desired frame.

This process is generally too slow to keep up with

arbitrary scrubbing, so, when the user starts to

scrub, the model reconstruction is frozen and only

the video updates with the scroll bar. Once the scroll

bar is released and normal play resumed, the model

reconstruction fast-forwards or rewinds to the new

frame and begins playing in sync with the video once

again. Resetting (as required for rewinding) takes

roughly one-tenth of a second, while the time

required for fast-forwarding depends on how

much bone is removed and may take up to several

seconds. As an example, on our dual-processor

3-GHz machine, fast-forwarding to the end of a full

procedure of 526 seconds, involving the removal of

18,408 voxels, takes approximately 4.5 seconds.

Of this time, approximately 1.0 second is spent

generating the new isosurface triangulation, 0.4

seconds computing new normals, 1.5 seconds

updating the bone dust simulation, 1.0 second

reshading the bone based on the new viewpoint,

and 0.4 seconds processing all the recorded data.

We experimented with saving triangulation ‘‘key-

frames’’, consisting of triangulation data at regular

time intervals to reduce the amount of re-triangula-

tion needed when rewinding or fast-forwarding, but

found this to be too memory-intensive to be

worthwhile on our system.

Visualizing the metrics

One of the most important features of the metrics

console that allows it to be used as an active aid to

improving performance rather than simply as an

assessment of skill level is its ability to help the user

localize and identify exactly when and where

problems occurred. By making it easy to find

trouble spots – times and places where performance

was rated poorly – the console provides an efficient

mechanism for the user to watch what he/she did

wrong and to see how to improve.

When the metrics are initially computed (see

Pre-computing metrics above), in addition to deter-

mining the final overall scores for each metric,

scores are also computed and recorded over each of

N time intervals, where N is a user-specified

number of bins. These sub-scores are plotted on a

graph with the x-axis corresponding to time and the

y-axis to the value of the sub-scores. The graph is

positioned just below the replay scroll bar, with the

time scale of the x-axis corresponding to that of the

scroll bar. Therefore, the user can quickly scrub to a

time of particular interest, such as an interval with a

particularly low or high score, and watch the video

and/or explore the reconstructed model at that time.

Many of the metrics compute whether a certain

condition held at the time of removal of each drilled

voxel, and report the percent of such voxel removals

for which the condition held. Thus, in addition to

breaking down the scores for these metrics based on

time intervals, the scores can also be localized in

space by maintaining with each voxel whether the

condition held when it was removed.

This information may then be presented to the

user in the form of colored dots appearing as bone is

drilled away (Figure 4). In addition to the video and

reconstructed model options for the two display

panels, the user may select a ‘‘colored voxel’’ view

that is equivalent to the reconstructed model view

except that, instead of displaying the bone isosur-

face, dots appear whenever a voxel of bone is

removed. All of the other anatomy is present (unless

additional cut-away view options are selected),

so the proximity of these voxels to key structures

(such as nerves and blood vessels) may be easily

seen. Typically, the user would view a video in one

panel and the colored voxel view in the other panel,

watching the dots appear in the latter view as the

drill advances in the former view. The dots are

colored according to performance at the time that

voxel was removed, according to the currently

selected metric. In most cases, one color (such as

green) is shown for voxels removed with correct

technique and another color (such as red) for those

drilled improperly. For example, for the visibility

metric, voxels removed while maintaining proper

visibility may be shown in green while those

removed while visibility was blocked by a shelf of

bone may be shown in red. Some metrics, such as
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the expert removal probabilities, have a continuous

rather than binary value per voxel, which may be

expressed by shading the dots with varying color

intensities.

An additional option allows the user to set a

‘‘window size’’ W while replaying the simulation

in order to display only the W most recently

removed voxels, rather than all voxels removed up

to that point, so that the voxels of current interest

are not obscured by previously removed ones.

Additional visualizations are available to elucidate

information about collisions and structure exposure

and overexposure. Whenever a collision between a

drill head and a critical soft-tissue structure occurs

during playback, a sphere appears at the intersection

point with radius proportional to impact force.

Structures may be shaded in one color for regions

that have met the direct exposure criteria, in another

color for regions that may be inferred from the

directly exposed regions, and in yet another color

for regions that have been overexposed. Just as for

the other metrics, the percentage exposure (direct,

inferred, or over) of critical structures (e.g., facial

nerve, sigmoid sinus, chorda tympani) and the

number of collisions may also be plotted as a

function of time on the graph above the scroll bar to

allow for rapid location of problem areas.

At the bottom of the screen is a tab control that

allows the user to select individual metrics

for evaluation. Within each tab page there are

a number of edit boxes and other controls that

allow the user to customize the parameters of all of

the metrics. For example, the user may specify how

thick a layer of bone may remain over a structure for

it still to be considered exposed, how far apart the

suction and drill may be before it is considered poor

technique, or how large a force magnitude is

considered safe. Some metric parameters may also

be loaded from files, such as the expert removal

probabilities for voxels and maximum allowable

force magnitudes at any number of different

distances from any of the structures (in effect

defining a step function between distance and

maximum allowable magnitude for each specified

structure). The final metric values for the complete

procedure are also displayed on the tab pages of

their respective metrics. In addition to these overall

scores, many metrics also report sub-scores for

voxels within a threshold distance (also modifiable

on the tab page) of each of several key structures.

Figure 4. An overview of the console, with the visibility metric selected. It is clear that the user used proper saucerizing
technique while making the hole on the right but is now undercutting while drilling the hole on the left. Red dots in the
visually annotated reconstructed model view show where the mistake occurred, and the metric-versus-time graph below the
display panels shows when it occurred. [Color version available online.]
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having loaded the simulation data file, he/she may

press a ‘‘Recompute’’ button to reset the console

and pre-compute all the metrics again using the new

parameters.

Interactive feedback while performing the procedure

In addition to their use in the performance

evaluation console, many of these visualizations

are also available in the simulator itself while

performing the virtual mastoidectomy (Figure 5).

Edit boxes, check boxes, and drop-down menus in

the simulator’s user interface provide the ability to

display the colored voxels according to several

customizable metrics (such as visibility, forces, and

removal region) while drilling.

As the user performs a virtual mastoidectomy,

interactive feedback may be provided in the form

of colored dots. Bone that has been removed

while maintaining proper technique according

to the currently selected metric is colored green,

while improperly removed bone is shown in red.

The user may specify how many of the most recently

removed bone voxels to show, set the parameters of

the evaluation metrics, toggle rendering of the non-

removed bone on and off, set the current metric,

and toggle the colored dots on and off. A bar is also

available at the edge of the screen to show the

relative proportion of correctly and incorrectly

removed bone.

Validation

It is essential that a simulator itself, the metrics used

in it, and the mechanisms for providing feedback

have all been validated in order to ensure that the

time spent using it is beneficial and that evaluations

provided by the ‘‘virtual instructor’’ match those

that the real instructor would provide were he/she

present. Therefore, in this section, we present the

results of several studies that attempt to establish

some preliminary validation for each of these aspects

of our system.

Validating the simulator

In our first study, 15 right-handed participants were

asked to perform a mastoidectomy in our simulator.

Participants included four experienced surgeons,

Figure 5. An example of interactive feedback in the simulator, with the bone removal metric selected. Bone removed by
the user at the far right that was removed by less than 20% of the experts (as parameterized in the ‘‘Prob’’ text box in the
bottom right corner) is shown in red, while bone in the center that was removed by a higher percentage of the experts is
shown in green. The bar at left shows the relative proportion of correctly (green) and incorrectly (red) removed bone.
[Color version available online.]
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experience, and seven novices with no surgical

experience. They were presented with a tutorial of

the simulator and were given 15 minutes to practice

using the haptic devices and the simulator’s user

interface. Participants were then presented with an

instructional video describing the target procedure,

and were given access – before and during the

procedure – to still images indicating the desired

appearance of the bone model at various stages in

the procedure. Participants were asked to perform

the same procedure twice.

Each participant’s hand movements, haptic

forces, and surgical interactions were logged to

disk, and then later rendered to video. Videos were

assigned a global score on a scale of 1 to 5 by two

experienced ear surgery instructors; the instructors

were not aware of which videos came from which

subjects and viewed them in randomized order.

Results from instructor-assigned scores. The mean of

the global scores received by the participants with

prior surgical experience was found to be signifi-

cantly different (4.1 to 2.7, p <0.0001 using one-

tailed t-test) from the mean of the global scores

received by the novices, thus establishing discrimi-

native validity of our simulator. The scores assigned

by the two instructors were well correlated

(r¼ 0.718, p< 0.0001), demonstrating inter-rater

reliability.

Results from classification algorithms. The field of

machine learning has developed a wide array of

algorithms used for pattern recognition in fields

such as speech recognition and handwriting recog-

nition. Such algorithms may also be used to

recognize the ‘‘pattern’’ of expert behavior, as

distinct from novice behavior, in a surgical simu-

lator, which can provide further evidence of the

discriminative validity of the simulator.

A Hidden Markov Model (HMM) is one such

algorithm. A sequence of observed values is viewed

as having been generated by some process that can

transition amongst a set of states, each state having

its own probability distribution for generating

output values. It makes the simplifying assumption,

called the Markov assumption, that the output value

probability distribution depends only on the current

state and not on any of the previous states or output

values, and that the state transition probabilities

at any point also depend only on the current state.

The model’s design is defined by the number of

states, and it is parameterized by the transition

probabilities between each pair of states and the

output distribution for each state. If the output

values are continuous, and if each state may be

assumed to output values according to a Gaussian

distribution, then a mean � and standard deviation

� may be associated with each state. If there are N

multiple, synchronized streams of output data, each

observed output is an N-dimensional vector. Thus,

a multivariate Gaussian model may be used, each

state being characterized by an N-dimensional

vector �, with each element giving the mean for

one of the streams, and an N�N covariance

matrix �.

Using the data from the previously described user

study, the eight highest-scoring procedures were

deemed ‘‘expert’’ and the eight lowest-scoring as

‘‘novice’’. All of these highest-scoring procedures

were in fact performed by participants with surgical

experience in mastoidectomy, and the lowest-scor-

ing by those without such experience. Using leave-

one-out cross-validation, one data set was held out,

and separate novice and expert multivariate

Gaussian-output HMMs were trained using the

Baum-Welch Algorithm [37] (making use of Kevin

Murphy’s Matlab HMM toolbox [38]). The prob-

abilities of the held-out data set with respect to each

of the two HMMs were then calculated using the

Forward Algorithm [39], and the data set was

classified with the model yielding the higher

probability. This was repeated 16 times for each

HMM architecture and feature set, holding out one

of the data sets each time. The entire procedure was

repeated for 10 trials, as the learning process can

sometimes be sensitive to the random values used

for the initial parameter guesses.

HMM architectures with between 3 and 10 states

were tested. Various combinations of raw data

Table II. Average proportion correctly classified using HMMs with different numbers of
states and different sets of features.

3 4 5 6 7 8

Force 0.681 0.700 0.713 0.744 0.763 0.775

Force, position, distance 0.750 0.769 0.750 0.806 0.756 0.731

Position 0.750 0.538 0.631 0.619 0.631 0.656

Force, position, distance, suction position 0.788 0.744 0.769 0.825 0.850 0.800

Force, position, distance, suction-drill distance 0.738 0.788 0.819 0.769 0.819 0.813
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magnitudes, drill positions, suction positions,

distances from the facial nerve, and drill-suction

distances, were examined. ‘‘Positions’’ were com-

pressed to one dimension: distances from the origin.

Data were sampled 10 times per second, with a

25-millisecond sliding window smoothing the ori-

ginal data sampled at 1-millisecond intervals. This

resulted in data sets of on the order of several

thousand observations each.

The feature set consisting of force magnitudes,

drill positions, drill distances from the facial nerve,

and suction positions proved most successful in our

experiments. Using a seven-state HMM, an average

of 6.8 of the 8 experts (85%) and 6.8 of the 8

novices (85%) were correctly classified. Sensitivity

to initial parameter guesses was low (standard

deviation: 0.4 for experts, 0.6 for novices). The

seven-state HMM architecture worked best for this

data. Results for additional reasonably successful

feature sets are given in Table II.

Validating the metrics

By computing the values of the metrics for each of

the virtual mastoidectomies performed in the user

study described in the previous section, we

attempted to validate the metrics.

Results from instructor-assigned scores. The correla-

tions of each of the metrics with the average of the

two global scores assigned by the instructors are

shown in Table III. Most of the metrics (1, 2, 4–6,

8–16, 20) had a statistically significant correlation

(p<0.05) with assigned global scores. The strongest

correlations were for Metrics 1 (visibility) and

8 (bone removal region). While the avoidance of

applying excessively large drill forces (12–16) did

have a significant (though somewhat weak) correla-

tion with performance, there was little such correla-

tion for overall drill velocities (17), or for velocities

when near the dura or sigmoid (18, 19), but there

was somewhat of a correlation for velocities

when near the facial nerve and inner ear (20, 21).

This may reflect a tendency for skilled participants

to always avoid applying large forces while still

working quickly and confidently in relatively safe

areas and exercising extreme caution in the parti-

cularly dangerous regions near the facial nerve and

inner ear.

The number of voxels for which the user’s choice

to remove or not to remove differed from that of a

large majority of the experts (8) correlated much

better with instructor scores than the mean expert

probabilities of removed voxels (7), perhaps because

Table III. Correlations of metrics with the average of the
global scores assigned by the two instructors.

Metric r p

Drilling technique

Pct bone visible at removal (1) 0.728 <0.001

Pct removed with burr too large (2) �0.405 0.022

Jump frequency (3) �0.226 0.213

Mean drill angle (4) �0.405 0.022

Suctioning technique

Pct excessive inter-tool distance (5) �0.469 0.007

Pct excessive dust (6) �0.365 0.040

Bone removal

Mean removal probability (7) 0.337 0.059

Pct improbable (non)removals (8) �0.794 <0.001

Facial nerve exposure

Pct directly exposed (9) 0.469 0.007

Pct direct or indirect exposed (10) 0.519 0.002

Pct overexposed (11) �0.536 0.002

Drill forces

Pct excessive force (12) �0.355 0.046

Near dura (13) �0.471 0.007

Near sigmoid (14) �0.420 0.017

Near facial nerve (15) �0.563 <0.001

Near inner ear (16) �0.468 0.007

Drill Velocities

Pct excessive velocity (17) �0.131 0.474

Near dura (18) �0.152 0.407

Near sigmoid (19) �0.143 0.434

Near facial nerve (20) �0.387 0.029

Near inner ear (21) �0.339 0.058

Table IV. Correlations of metrics with global scores and with metric-specific sub-scores.

Specific score Global score

Metric r p r p

Pct bone visible at removal (1) 0.777 <0.001 0.728 <0.001

Jump frequency (3) �0.355 0.046 �0.226 0.213

Pct excessive distance between tools (5) �0.737 <0.001 �0.469 0.007

Pct excessive dust (6) �0.681 <0.001 �0.365 0.040

Mean removal probability (7) 0.323 0.072 0.337 0.059

Pct improbable choices of removal regions (8) �0.736 <0.001 �0.794 <0.001

Pct of facial nerve directly exposed (9) 0.400 0.023 0.469 0.007

Pct of facial nerve directly or indirectly exposed (10) 0.411 0.019 0.519 0.002

Pct of facial nerve overexposed (11) �0.500 0.004 �0.536 0.002
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8 only the former considers non-removed voxels, and

the experts may have been careful to remove all of

the required region, or because experts may have

different styles and vary somewhat from the

‘‘average’’ expert while still rarely making any

extremely unorthodox decisions. However, the

results for the bone removal metrics must be

viewed with caution because there was overlap in

the training data used to define expert removal

probabilities and the test data. Thus, a more careful

analysis of this metric using leave-one-out cross-

validation was performed, which also showed a

strong correlation (r¼ 0.74, p<0.00001).

Direct exposure (9) correlated reasonably well

with instructor scores, and adding the computed

inferred regions to the directly exposed regions (10)

further strengthened the correlation, from r¼ 0.469

to r¼ 0.519. Overexposure (11) had an even

stronger (negative) correlation (r¼�0.536).

One of the instructors also assigned sub-scores

(also on a scale of 1 to 5) to each of the videos

according to several specific criteria directly related

to individual metrics included in the simulator.

Several metrics correlated much more strongly with

these specific sub-scores than with the global scores,

as shown in Table IV. The frequency of drill jumps

(3) was found to be significantly (though weakly)

correlated with the instructor’s assessment of

making ‘‘purposeful, confident motions’’, while

the distance between instruments while drilling (5)

and the percent of time drilling with excessive bone

dust in the surgical field (6) strongly correlated with

the specific assessment of ‘‘two-handed and suc-

tioning technique’’. However, for most metrics, the

correlations with sub-scores were fairly similar to

their correlations with the global scores, probably

due to the tendency of most participants to score

either relatively high on most scores or relatively low

on most scores.

Results from classification algorithms. In addition to

using raw data as features, HMMs were also

developed using metric values as the features

in order to evaluate the discriminative validity of

the metrics. Time-varying streams were acquired by

recording, as each voxel was removed, whether it

was drilled while using proper technique according

to several different metrics. These binary data

streams were then smoothed using a sliding

window of width 25. Leave-out-one cross-validation

was then performed using the sixteen expert and

novice data sets with Hidden Markov Models, as in

the Results from classification algorithms sub-section of

the Validating the simulator section above. Correct

classification rates of 87.5% were consistently

obtained using models of one, three, five, seven,

and nine states in repeated trials with random

initializations, using distance to facial nerve and

metric scores for visibility, removal region,

force magnitude, suction to drill distance, jump

frequency, burr choice, and dust accumulation as

the features. The relative ease with which high

classification rates could be achieved using a variety

of models and initializations offers some evidence of

the metrics’ validity for differentiating skill level.

A logistic regression classifier was also trained

with leave-out-one cross-validation independently

for each of 20 metrics. Results, showing the

proportion of experts and novices correctly classi-

fied when using each metric, are presented in

Table V. The visibility metric was successful in all

cases, suggesting that this is a good indicator of

expertise. Metrics testing subjects’ abilities to

remove the correct bone and to keep their instru-

ments close together had correct classification rates

of 87.5%. Application of excessive forces in general

was not discriminative (50%), but application of

excessive forces near the facial nerve was highly

discriminative (87.5%), underscoring the experts’

recognition of areas in which extra caution is

necessary.

Validating the feedback mechanisms

In order to validate our performance evaluation

console as an instructional tool that can lead to

Table V. Percentage of experts and novices correctly
classified with leave-one-out cross-validation using a
logistic regression classifier with individual metrics as
features.

Proportion correct

Metric ExpertNoviceOverall

Pct bone visible at removal 1.000 1.000 1.000

Improbable nonremovals 0.875 0.875 0.875

Pct excessive inter-tool distance 0.875 0.875 0.875

Pct exc forces near facial nerve 0.875 0.875 0.875

Pct removed with burr too large 0.875 0.750 0.813

Pct overexposed facial nerve 1.000 0.625 0.813

Mean removal probability 0.750 0.750 0.750

Improbable removals 0.750 0.750 0.750

Pct directly exposed facial nerve 0.875 0.625 0.750

Average drill angle deviation from 90
�

0.875 0.625 0.750

Pct excessive velocities near facial nerve 0.875 0.500 0.688

Pct excessive dust 0.750 0.625 0.688

Pct excessive velocities 0.750 0.500 0.625

Number of collisions 0.875 0.375 0.625

Jump frequency 0.750 0.500 0.625

Pct removed with burr too small 0.875 0.375 0.625

Pct indirectly exposed facial nerve 0.750 0.500 0.625

Pct overexposed chorda 0.875 0.375 0.625

Pct overexposed sigmoid 1.000 0.125 0.563

Pct excessive forces 0.375 0.625 0.500
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8 improved performance and to begin to explore how

it could be used most effectively, we conducted a

user study in which ten subjects were asked to

perform four trials each in which they were to

properly expose a wishbone-shaped tubular struc-

ture (mimicking a nerve or blood vessel) embedded

in a cube of bone in our simulator. The orientation,

thickness, and twisting of the structure varied

randomly between trials. All the participants were

shown a video of how to properly perform the virtual

procedure and given a description of the metrics

with which their performance would be evaluated:

voxel visibility, structure direct exposure and over-

exposure, and drill-tube collisions. The interface

for the simulator was simplified from our general

mastoidectomy simulator in several ways; for

example, there were no menus (the right hand was

always the drill and the left always the camera) and

no bone dust. Also, inferred exposure was not

considered.

All participants were notified with a beep when

they caused an injury by contacting the tube with

the drill, but four participants (the control group)

received no additional direct feedback. The others

(the feedback group) were instructed on the use of

the performance evaluation console and allowed to

independently review their performance on each

trial according to the metrics before performing

their next trial, and were also provided with

interactive feedback with regards to voxel visibility,

except during the final trial (Figure 6). Within the

feedback group, half received the augmented feed-

back during and after each trial, while the other half

received this feedback only during and after every

other trial.

Overall, the feedback group learned to maintain

proper visibility more effectively than the control

group, with the difference between their percentage

of properly removed voxels on the final trial (during

which no participants received augmented feed-

back) being significant at the 92% confidence level

(p¼ 0.074). Within the feedback group, those who

received feedback with every other trial tended to do

somewhat better than those who received feedback

with every trial (although this difference was not

statistically significant). This is consistent with

Figure 6. Reviewing a procedure in the performance evaluation console study. Members of the Feedback Group received
interactive feedback about their maintenance of visibility with red (poor) and green (good) dots as bone was drilled away
and a meter showing the percentage of red and green voxels over the last 50 removals, as shown in the video replaying in the
left panel. After completing a trial, they were able to review their performance with respect to visibility, exposure/
overexposure, and collisions with the tube. Shown at right is a visualization of achieved exposure, with properly exposed
regions in white, overexposed regions in red, and unexposed regions in blue. [Color version available online.]
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8 learning theory results suggested in such papers as

reference [40], because people may become depen-

dent on the feedback if it is always available (as was

actually noted by one participant in the group that

received feedback with every trial). The difference in

the means between the alternating feedback sub-

group and the control group was significant at the

94% confidence level (p¼ 0.058). The feedback

group did not receive much more information about

the other metrics than the control group, since all

were given beeps when colliding with the nerve and

there was significant inherent feedback with regards

to exposure, so there were no significant differences

with regards to these aspects.

Conclusion

In this paper, we have described our mastoidectomy

simulator, proposed a wide variety of algorithms for

assessing performance on this simulator and provid-

ing constructive feedback to the user, and reported

on several user studies attempting to establish some

level of validation for this work. By considering a

large number of metrics and feedback mechanisms

such as these, simulators may soon be able to serve

as a virtual instructor that may be an adequate

substitute for the real instructor throughout much of

the learning process, greatly reducing the time

demands on instructors and increasing learning

opportunities for trainees. In addition to making

time spent on the simulator more educational, users

have also noted, not surprisingly, that the inclusion

of metrics and visual feedback makes the simulator

experience more fun, competitive, and intense,

which is likely to result in more time being spent

learning on the simulator. With the increasing

emphasis on incorporating patient-specific data

into simulators, the value of such ‘‘intelligent

tutors’’ may be actualized not only for young

surgical residents but also for experienced surgeons

in the context of patient-specific rehearsal for

upcoming procedures.

All of the metrics presented in the preceding

sections have been developed and implemented in

the context of a specific procedure: mastoidectomy.

However, nearly all are based on principles that are

common throughout the surgical profession.

Maintaining proper visibility of the surgical field,

sufficiently exposing critical anatomic structures,

applying appropriate forces and velocities as vulner-

able structures are approached, removing the

optimal volume of bone or tissue, and exercising

efficient, safe, and well-coordinated control of

surgical instruments are essential components of

good technique in a wide variety of procedures.

For example, properly exposing the recurrent

laryngeal nerve during thyroid surgery and the

cystic duct during gall bladder removal are essential

skills for the general surgeon; choosing the correct

tissue for removal is vital in bile duct excision for

biliary atresia and choledochal cyst; and application

of appropriate forces and skillful manipulation and

coordination of instruments are paramount in all

laparoscopic procedures. Nevertheless, one of the

guiding principles of this work was to use domain-

specific knowledge to mimic the evaluation criteria

used by expert ear surgeons, so, just as

human otolaryngologists are better tutors for

residents in ear surgery than orthopedic surgeons

(and vice versa), it may be unrealistic to expect

automated evaluation methods to generalize too

broadly without additional domain-specific

knowledge.

Much remains to be done with regards to the

validation of our simulator and our metrics.

We have not shown that training on our simulator

or receiving our feedback visualizations improves

performance in the operating room, nor that metric

scores obtained while performing a virtual proce-

dure are good predictors of corresponding aspects

of performance during a real procedure.

Furthermore, while we have shown that use of our

performance evaluation console can facilitate learn-

ing at least within the virtual environment, there is a

wide array of questions about such factors as when

to provide such feedback (interactively or in a post-

procedure debriefing session?), how to provide it

(which visualizations are most useful?), and how

often to provide it (during or after each trial, or with

some schedule of decreasing frequency?). The

answers to many of these questions may be different

for different metrics.
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