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Abstract 
 

This paper explores the use of haptic feedback to 
teach an abstract motor skill that requires recalling a 
sequence of forces.  Participants are guided along a 
trajectory and are asked to learn a sequence of one-
dimensional forces via three paradigms: haptic 
training, visual training, or combined visuohaptic 
training.  The extent of learning is measured by 
accuracy of force recall.  We find that recall following 
visuohaptic training is significantly more accurate 
than recall following visual or haptic training alone, 
although haptic training alone is inferior to visual 
training alone.  This suggests that in conjunction with 
visual feedback, haptic training may be an effective 
tool for teaching sensorimotor skills that have a force-
sensitive component to them, such as surgery.  We also 
present a dynamic programming paradigm to align 
and compare spatiotemporal haptic trajectories. 

1. Introduction and Related Work 
Haptic feedback has become an integral component of 
numerous simulation systems, particularly systems 
designed for teaching surgical skills (e.g. [3],[9],[19]).  
Haptic rendering in nearly all such simulation 
environments has been designed to realistically 
replicate the real-world forces relevant to a particular 
task.  Recent results suggest that simulation 
environments can contribute to users’ learning of real 
motor skills [22] and to users’ perception of virtual 
object shapes [8].  In contrast, Adams et al [1] found 
no significant learning benefit from haptic feedback for 
a manual assembly task, despite an overall benefit from 
training in a virtual environment. 

Although haptic feedback is often used to replicate 
real-world interaction forces, haptics has the potential 
to provide cues that are not available in the physical 
world.  In particular, haptic feedback can be used as a 
channel for presenting motor patterns that a user is 
expected to internalize and later recall.  Feygin et al [5] 
referred to this approach as “haptic guidance”, and 
found that haptic feedback contributes to learning 

spatiotemporal trajectories.  Williams et al [20] 
employed this technique in a medical simulator and 
also found that it contributed to learning position 
trajectories.  Patton and Mussa-Ivaldi [13] employed 
an implicit version of this technique, allowing users to 
adapt to a movement perturbation in order to teach a 
contrary motion.  In contrast, Gillespie et al [6] used a 
similar approach to teach a motor control skill, and 
found no significant benefit from haptic training, 
although haptic training did affect the strategy that 
participants used when performing the motor skill in 
the real world.  Huang et al [7] required participants to 
excite a virtual oscillator with visual, haptic, or 
visuohaptic feedback, and found visuohaptic feedback 
to be superior to the other modalities (consistent with 
the results presented here for a significantly different 
task).  O’Malley et al [12] found that using haptic 
constraints provides significant benefit for both 
performing and learning movement patterns. 

However, little work to date has demonstrated the 
ability of haptic feedback to teach a precise sequence 
of forces that should be applied as a user moves along 
a trajectory in space.  This type of learning is relevant 
to force-sensitive, visually-guided tasks, particularly 
including numerous surgical procedures ([17],[18]).  
Yokokohji et al [21] presented forces contrary to a 
correct level of force for an object-manipulation task, 
but found that this approach was ineffective for the 
task they were evaluating.  More recently, 
Srimathveeravalli and Thenkurussi [16] used haptic 
feedback to teach users to replicate both shape and 
force patterns, but found insignificant benefit of haptic 
feedback for learning shape patterns, and did not find 
haptic training to be beneficial at all for learning force 
patterns. 

The present work examines a task in which the 
participants’ goal was to learn and recall a pattern of 
forces along a single axis while moving along a planar 
curve.  In this context, we demonstrate that haptic 
feedback is beneficial for learning a series of forces 
along a movement trajectory. 



2. Methods 
We describe an experiment that assesses the impact of 
haptic feedback on participants’ ability to learn a 
sequence of forces.  Participants were presented with 
sequences of forces via three training modalities – 
visual, haptic, and combined visuohaptic – and were 
asked to recall those forces.  While learning and 
recalling forces, participants were passively moved 
along a spatial trajectory, which was also presented 
visually.  The participants used this trajectory as 
position references for force patterns.  A more detailed 
description of this experiment follows. 

2.1 Participants 

Twelve right-handed participants, nine male and three 
female, aged 19 to 21, took part in the present study.  
All were undergraduate students.  None had previous 
experience with haptic devices.  Participants were 
compensated with a $5 gift certificate, and an 
additional $10 gift certificate was offered to the three 
participants with the highest overall score (across all 
conditions) as incentive.  Written consent was obtained 
from all participants; the consent form was approved 
by the Stanford University Institutional Review Board. 

2.2 Apparatus 
Visual information was presented on a 19” LCD 
monitor placed approximately 2.5’ from the user.  
Haptic feedback was presented via an Omega 3-DOF 
force-feedback device (Force Dimension, Lausanne, 
Switzerland), resting on a table in front of the monitor.  
This device was selected because it was able to deliver 
the sustained forces required for this experiment (up to 
8N for up to twenty seconds), which other 
commercially-available haptic devices could not.  
Participants were able to rest their elbow on a table.  
Software was run on a dual-CPU 2GHz Pentium 4 
computer running Windows XP, and was developed in 
C++ using the CHAI toolkit [4].  The software used for 
this experiment has been made available online; see 
Appendix A for download information.  

2.3 Stimuli 
The following axis convention was used in the present 

study: 
 

• The x axis runs from the participant’s left to the 
participant’s right (parallel to the table) 

• The y axis runs upward (perpendicular to the table) 
• The z axis runs toward the user (in and out of the 

display plane) 
 

Spatial trajectories were generated for each trial to 
passively move the participant’s hand from left to right 
while sinusoidally varying the participant’s hand 
position along the z axis.  The spatial trajectory had no 
y component; i.e. it was entirely in a plane parallel to 
the table.  Trajectories spanned 10cm in the horizontal 
(x) direction and 6cm in the z direction, and moved the 
user at a constant velocity of 1.6cm/s.  The z 
component of each trajectory was the sum of twenty 
sinusoids with random frequencies, phases, and DC 
offsets, with a maximum spatial frequency of 0.3 
cycles per centimeter.  After summing the sinusoids, 
each trajectory was scaled to fit the 6cm range in z. A 
typical spatial trajectory is presented in Figure 1. 

Force patterns were generated for each trial along 
the y axis, perpendicular to the plane of movement 
along the spatial trajectory.  These patterns are the 
values that the participant was asked to learn in each 
trial.  Force patterns were generated as functions of 
time, but because the participant was moved along the 
trajectory at a constant rate, force patterns were also 
fixed relative to the spatial trajectory.  The temporal 
force patterns were generated as the sum of four 
sinusoids with random frequencies, phases, and DC 
offsets, with a maximum frequency of 0.2Hz.  After 
sinusoidal summing, force patterns were scaled into the 
range [0N,10N].  To introduce limited higher-
frequency peaks without creating unreasonably jagged 
force patterns, parabolic “bumps” were randomly 
blended into each sinusoidal trajectory; these bumps 
were allowed to range up to 12N.  After summing the 
base pattern and the parabolic bumps, the final force 
pattern was ramped up and down over the first and last 
one second of the pattern to avoid jerking the haptic 
device.  A typical force pattern is presented in Figure 
2.  This graph represents the magnitude of the normal 
force the participant was asked to learn; the learned 
force was in all cases in the downward (−y) direction. 

2.4 Experimental Conditions 
The following 3 training conditions were employed in 
a blocked design:  haptic display of normal force (H), 
visual display of normal force (V), and combined 
visuohaptic display of normal force (VH).  In all three 
conditions, the participant’s hand was pulled along the 
spatial trajectory (in the xz plane) via a proportional-
derivative (PD) controller with proportional and 
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Figure 1.  A typical experimental spatial trajectory.



derivative gains of 0.9N/mm and 0.1N·s/mm, 
respectively.  Offline analysis showed no significant 
lag behind the ideal trajectory in any participant’s data, 
indicating that the gain was sufficiently high.  The 
visual display showed the spatial trajectory, along with 
a display of the participant’s current device position, 
under all three training conditions. 

In the haptic (H) training condition, the haptic 
device applied the opposite of the embedded force 
pattern directly to the user along the +y direction 
(perpendicular to the movement plane).  The 
participant was instructed to keep the device in the 
movement plane, i.e. to precisely oppose the upward 
force applied by the device.  In this manner, the 
participant practiced applying the sequence of forces 
that he/she was expected to learn.  Figure 3a shows the 
display presented to the user in the H condition. 

In the visual (V) training condition, the haptic 
device was constrained to the xz plane by a PD 
controller with P/D gains of 2.0N/mm and 0.3N·s/mm, 
respectively.  No haptic representation of the 
embedded force pattern was presented.  As the user 
was pulled along the trajectory, an on-screen vertical 
bar changed its height to indicate the magnitude of the 
target normal force at the current trajectory position.  
This bar moved along the trajectory along with the 
representation of the participant’s current device 
position, so the participant could visually attend to 
both simultaneously.  Figure 3b shows the display 
presented to the user in the V condition. 

In the combined visuohaptic (VH) training 
condition, the haptic device was constrained to the xz 
plane as in the visual (V) condition, and the current 
target force is displayed as a blue bar, as in the visual 
condition.  However, an additional graphical bar is 
presented in green.  The additional bar indicates the 
normal force currently being applied by the participant.  
Participants were instructed to match the heights of the 
blue and green bars.  Thus the participants were – via 
the plane constraint – receiving haptic feedback equal 
to the target force pattern.  Figure 3c shows the display 
presented to the user in the VH condition. 

A fourth condition – the test (T) condition – was 
used following all training conditions to evaluate 
learning through force recall.  The visual display in this 
condition was identical to that used in the haptic (H) 

condition; no visual indication of force was provided.  
In the test condition, the haptic device was constrained 
to the xz plane as in the visual (V) condition.  The user 
was instructed to apply the learned pattern of forces in 
the y direction (normal to the spatial trajectory).   

In all three training conditions, a small square 
appeared on screen when the device reached saturation; 
this was added to be “fair” to the visual training 
condition, which otherwise did not provide any 
indication of absolute force magnitude. 

2.5 Experimental Procedure 

Each participant was given an introduction to each of 
the conditions described above, and was then asked to 
participate in 72 trials, with a ten-minute break after 36 
trials to prevent fatigue.  A trial consisted of a single 
training/testing pair.  For each trial, the participant was 
presented with a trajectory using one of three training 
conditions (H, V, VH) and was immediately tested on 
that trajectory using the test (T) condition described 
above.  Trials were grouped into blocks of three 
training/testing pairs that repeated the same trajectory 
and same force profile using the same training 
condition. 

For example, for a V condition trial block, the 
participant was trained with the visual bargraph display 
of force by traversing the trajectory from left to right 
once.  After returning the stylus tip position to the left 
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Figure 2.  A typical experimental force pattern. 
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Figure 3.  The visual representations of the spatial 
trajectory and normal force presented to the user in 
the (a) haptic training condition (no visual 
representation of force), (b) visual training 
condition (blue bar representing current target 
force), and (c) combined visuohaptic training 
condition (blue bar representing current target 
force magnitude and green bar current user-applied 
force magnitude). 



of the trajectory, the participant was immediately 
tested for force recall once (thus completing one trial).  
This training/testing pair was then repeated twice more 
(for a total of three trials per block).  A new training 
condition was then randomly selected, and a new 
trajectory and a new force profile were randomly 
generated, for the next trial block. 

In summary, each participant completed a total of 
72 trials, representing 24 trial blocks for each of the H, 
V and VH conditions.  Throughout the experiment, the 
device positions and applied normal forces were 
recorded to disk for offline analysis. 

3. Data Analysis 
Each testing trial is scored individually for accuracy of 
force recall.  The input to the scoring mechanism is 
two force-vs-time curves: the “target” force pattern and 
the “applied” force pattern.  If these curves are similar, 
the trial should receive a high recall accuracy score.  A 
simple scoring approach might simply subtract the two 
curves and compute the root-mean-squared (RMS) 
difference at each point.  The synthetic example shown 
in Figure 4 illustrates why this is an inadequate 
approach.  In this figure, the black line represents a 
synthetic “correct” force pattern with three clear peaks.  
The red line represents the force pattern recorded from 
a hypothetical user who correctly recalled the three 
force peaks, each with a slight timing error.  The green 
line represents the force pattern recorded from a 
hypothetical user who did not apply any force at all.  A 
simple RMS-difference approach to scoring would 
assign a significantly lower score to the red curve than 
to the green curve, even though the red curve 
represents a significantly more accurate recall.  Feygin 
et al [5] computed an optimal linear transformation 
(scale and shift) to correct for similar errors.  This 
approach, however, will not adequately align all three 
peaks in this example, because the three peaks are 
offset in different directions.  In other words, different 
regions of the curve are scaled differently.  This 

problem is even more significant in real data series, 
which are more complex than this synthetic example. 

To address this problem and properly assess recall 
accuracy in a manner that is robust to local timing 
errors, we employed a scoring scheme based on 
dynamic programming (DP).  This approach has often 
been employed to align curves for shape recognition 
([2],[11],[14]) and speech recognition [15], and a 
similar approach was used by Patton and 
Mussa-Ivaldi [13] for matching “haptic attributes”.  
We describe our adaptation of dynamic programming 
for aligning force-vs-time curves. 

For each trial, the target and applied force patterns 
are resampled to a common time base, and the applied 
force patterns are low-pass filtered by a box filter with 
a width of 100 milliseconds.  An error matrix is then 
constructed to describe how well each point on the 
target pattern “matches” each point on the applied 
pattern.  If the resampled trajectories are 1000 samples 
long, this matrix contains 10002 entries.  The entry at 
location (i,j) answers the question: “how similar is 
point i in the target force pattern to point j in the 
applied force pattern?”  For this experiment, each entry 
in the error matrix is a weighted sum of the RMS 
difference in forces and the RMS difference in slopes 
(df/dt values) between the two points being compared.  
A penalty value is also specified to the dynamic 
programming algorithm to penalize time distortions.  
Dynamic programming is then used to find an optimal 
(minimum-cost) pairing between samples on the target 
and applied curves.  Figure 5 shows the alignment 
suggested by dynamic programming for a single trial. 

The applied force pattern is warped, according to 
this alignment, to the same time base as the target force 
pattern.  Figure 6 shows the same trial after warping 
the applied force pattern according to the DP result. 

After DP and warping, a score is assigned to each 
trial as a weighted average of the DP alignment cost, 
the RMS difference between the two curves after 
warping, and the RMS difference between the two 
curves’ slopes after warping.  Weights were adjusted 
empirically to match visual assessments of recall 
accuracy without knowledge of the experimental 
conditions for each of the assessed trials.  These 
weighted scores are used to assess the quality of recall 
for each trial.  A score of 0 indicates perfect recall; 
larger scores indicate lower recall accuracy. 

4. Results 
Scores are pooled over each training condition, 
allowing us to compare the recall quality for each 
training condition (864 recall trials per condition).  A 
one-way ANOVA confirms a significant difference 
among the three training paradigms (F(2,862)=10.61, 
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Figure 4.  A synthetic example illustrating the need 
for non-affine trajectory alignment.  The black line 
represents a synthetic “correct” force pattern.  The 
red line represents the force pattern recorded from 
a hypothetical user who correctly recalled the three 
force peaks, and the green line represents the force 
pattern recorded from a hypothetical user who 
didn’t apply any force at all. 



p<0.001).   Figure 7 shows the mean recall error for 
each training paradigm with 95% confidence intervals.  
Two-tailed T-tests with correction for multiple 
comparisons show that visual training promotes 
significantly more accurate recall than haptic training 
(p=0.02), visuohaptic training promotes significantly 
better recall than visual training (p=0.007), and 
visuohaptic training promotes significantly better recall 
than haptic training (p<0.001). 

Table I presents the paradigms that promoted the 
most and least accurate recall for each participant.  We 
observe that 9 of 12 participants had the lowest mean 
error in the visuohaptic training mode, and only 1 of 12 
participants had the highest mean error in the 
visuohaptic training mode.  This is consistent with the 
results presented in Figure 7, indicating again that 
visuohaptic training is the most effective paradigm. 

5. Discussion and Conclusion 
The results presented here demonstrate that 
participants are better able to memorize instructed 
force patterns when those patterns are presented both 
visually and haptically, rather than via either modality 
alone.  This is in contrast to the result presented by 
Srimathveeravalli and Thenkurussi [16], who asked 
participants to replicate a force pattern and a position 
trajectory simultaneously.  Their results show that 
including force information in a skill training paradigm 
produced lower overall error in participants’ recall of 
positional information, but higher overall error in the 
participants’ recall of forces.  However, the task they 
were exploring was significantly more complex: users 
were asked to recall both force and position in multiple 
degrees of freedom.   Our experiment focused on force 
alone – with position provided passively as a reference 
– and only focused on a single axis of force.  This more 
focused task is likely the basis for the difference in 
results.  Additionally, their experiment used smaller 

movements and a device with lower dynamic range, 
which may have limited participants’ ability to recall 
force information. 

Our results also show that haptic training alone is 
significantly less effective for this task than visual 
training alone.  This is somewhat surprising, since the 
task is a force-specific task and visual feedback lacks 
absolute magnitude information.  It is likely that the 
novelty of memorizing information presented 
haptically was a confounding factor; visual learning is 
so pervasive in everyday life that our results may 
understate the relative potential for learning via haptics 
alone.  Future experiments will explore the use of 
haptic information alone to improve training. 

The effectiveness of combined visuohaptic training 
suggests that haptic training may play an important 
role in teaching skills like surgery, which are visually-
guided but often require different normal and 
tangential forces to be applied at different places in the 
workspace.  The results presented here suggest a role 
not only for the use of haptic simulation incorporating 
simulated environmental feedback, but also active 
presentation of “correct” forces in a surgical context.  

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

Time (seconds)

Fo
rc

e 
(N

)

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

Time (seconds)

Fo
rc

e 
(N

)

 

Figure 5.  The alignment computed by dynamic 
programming for a single trial.  The red curve is the 
target force pattern, the green curve is the applied 
force pattern, and the blue lines connect points on 
each curve that are aligned by dynamic 
programming. 

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8
10
12

Time (seconds)

Fo
rc

e 
(N

)

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8
10
12

Time (seconds)

Fo
rc

e 
(N

)

 

Figure 6.  The target (red) and applied (black) forces 
for a single trial after warping the applied forces 
according to the results of dynamic programming 
(see illustration in Figure 5). 
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Figure 7.  Mean recall error (in relative units) for 
each training paradigm.  Error bars indicate 95% 
confidence intervals. 



These forces may come from online interaction with an 
experienced instructor, a paradigm we refer to as 
“haptic mentoring”, or from playback of prerecorded 
forces.  Toward this end, we have incorporated the 
approach presented here into a surgical simulation 
system [10], and future work will include evaluation of 
the user’s ability to transfer force-sensitive skills from 
the simulator to the real environment. 

Additionally, we plan to conduct further 
experiments to explore the roles played by visual and 
haptic information in the combined visuohaptic 
training paradigm.  This study was designed to 
evaluate the overall effectiveness of each paradigm in 
training force patterns, but additional experiments may 
allow us to identify whether certain frequency 
components of the target force patterns are being 
conveyed through one modality or the other. 

Appendix A: Software Availability 
The software used to conduct this experiment is 
available, along with data-manipulation scripts, at 
http://cs.stanford.edu/~dmorris/haptic_training . 
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Participant Best paradigm Worst paradigm 
1 Visuohaptic Visual 
2 Visuohaptic Haptic 
3 Visual Haptic 
4 Visuohaptic Visual 
5 Visuohaptic Haptic 
6 Visual Visuohaptic 
7 Visuohaptic Haptic 
8 Haptic Visual 
9 Visuohaptic Haptic 
10 Visuohaptic Haptic 
11 Visuohaptic Haptic 
12 Visuohaptic Haptic 

 

Table 1.  Training paradigms promoting the most 
and least accurate mean recall for each participant. 


