Large Haptic Topographic Maps: MarsView and the Proxy Graph Algorithm

Sean P. Walker*
Computer Science Department
Stanford University
Stanford, CA

Abstract

In this paper we develop an interactive 3D browser for large topo-
graphic maps using a visual display augmented by a haptic, or force
feedback, display. The extreme size of our data files (over 100 mil-
lion triangles) requires us to develop the “proxy graph algorithm”,
a new haptic contact model. The proxy graph algorithm approxi-
mates proven virtual proxy methods but enhances the performance
significantly by restricting the proxy location to the edges and ver-
tices of the object. The resulting algorithm requires less computa-
tion and reduces the average number of collision detection opera-
tions per triangle that the proxy crosses during each haptic update
cycle. We also develop a collision detection algorithm optimized
for our heightfield dataset.

Our “MarsView” software enables hands-on interactive display
of visual and geologic data with polygon counts in excess of 100
million triangles using a standard PC computer and a commercial
haptic interface. MarsView’s haptic user interface allows the user to
physically interact with the surface as they pan it around and zoom
in on details. The hybrid system renders complex scenes at full vi-
sual and haptic rates resulting in a more immersive user experience
than a visual display alone.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality H.5.2 [Information Inter-
faces and Presentation]: User Interfaces—Haptic I/O

Keywords: haptics, interface, Mars, topological map, large
datasets, texture, virtual proxy

1 Introduction

Within the past few decades the technology has become available
to explore and accurately map most of our world and Mars. A vast
quantity of topographic data is now available from satellite and sur-
face rover surveys. Mars, especially, has been a focus of recent
study and detailed maps are now available for the first time which
include close to a billion data samples [NASA n. d.].

With the new availability of geographic data comes a need to
efficiently browse through it and view it. While some work has been
done in this area [Stoker et al. 1999; Nesbitt et al. 1997], there is still

*e-mail:spw @cs.stanford.edu
Te-mail:jks @robotics.stanford.edu

Copyright © 2003 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.

© 2003 ACM 1-58113-645-5/03/0004 $5.00

83

J. Kenneth Salisbury

Depts of Computer Science and Surgery

Stanford University
Stanford, CA

Figure 1: MarsView in action.

a need for highly interactive means of organizing and interacting
with an ever-increasing body of topographic information streaming
in from our planetary science probes. Such a tool would allow the
scientific community to better understand the geography of remote
planets and allow the general public to better explore our world and
others.

This paper presents a first attempt at augmenting a visual topo-
graphic map display system with force display, or haptics. Haptic
interface devices use force feedback techniques to allow a human
user to physically interact with virtual objects — effectively allow-
ing physical manifestations of objects modeled in the computer to
be touched [Salisbury and Srinivasan 1997]. Adding force feedback
to a topographic map viewer allows the user to actually “touch” the
surface and feel the high resolution data as texture. In addition, a
haptic user interface allows more intuitive three-dimensional phys-
ical interaction providing a more immersive user experience.

Haptic rendering, much like visual or graphic rendering, requires
a physical model that can be queried to produce the appropriate
stimulation. Haptic rendering, however, requires update rates (on
the order of 1 kHz) significantly higher than required in graph-
ics; it also focuses on the real-time physical modeling of forces
and motion rather than light. One of the significant challenges
we addressed was how to maintain sufficiently high update rates
when rendering datasets with a very high density of geometric
information—such as that encountered in planetary surface maps.
A significant accomplishment of our work has been the creation of
a new class of algorithms which rely on the proxy graph contact
model reported herein.

The proxy graph contact model approximates the proven vir-
tual “proxy” methods such as the “god-object” method devised
by Zilles [1995]. By restricting the proxy location to the vertices
and edges of a single seamless non-intersecting triangular mesh
a speedup of several orders of magnitude can been accomplished

over previous methods. This allows extremely large topographic
maps of over 100 million triangles to be haptically rendered on
standard IBM PC compatible computers using commercial haptic
devices such as SensAble Technology’s PHANTOM line [Massie
and Salisbury 1994] or the DELTA line of devices from Force Di-
mension [Grange et al. 2001].

Using the proxy graph algorithm we created MarsView (depicted
in Figure 1), an application that allows the user to haptically and
graphically view large topographic maps of Mars or Earth. Within
MarsView, a map may be touched and manipulated using a novel
haptic user interface. MarsView allows the graphic display to be
run at a lower resolution than the haptic display to keep frame rates
responsive yet allow the hidden data to be felt as haptic texture. In
addition, a haptic user interface gives the surface convincing phys-
ical properties while it is examined at different levels of detail with
zooming and panning operations.

The remainder of this paper is organized as follows: Section 2
discusses the advantages and limitations of using existing proxy
haptic contact models with large datasets. Section 3 describes the
general proxy graph algorithm in detail along with some optimiza-
tions we were able to make when using a heightfield data repre-
sentation. Section 4 describes the MarsView application including
its haptic user interface. Sections 5 and 6 discuss future work and
conclusions respectively.

2 Previous Work

This section begins by describing haptic contact models and then
focuses on proxy based contact models. Then, it combines com-
mon themes from the two most prevalent proxy algorithms into a
general proxy contact model algorithm and discusses the merits and
limitations of that algorithm.

2.1 Haptic Contact Models

A haptic simulation requires three basic components: the haptic
device (which exerts forces on the user and senses position in 3D),
the software representation of the virtual objects, and the contact
model. Most haptic research has focused on the contact model be-
cause it provides the connection between the haptic device and the
virtual scene, generating forces based on the current position of the
haptic device at least a thousand times a second to give the user the
impression of touching a virtual object.

Although many contact models exist, they can be classified into
one of two types: those that use the previous position along with
the current position of the haptic device (which we call “histori-
cal methods” because they depend on prior state information), and
those which only use the current position. While non-historical
contact models are generally easier to implement, the lack of
knowledge about the direction of penetration of the object often
causes artifacts or unstable behaviour (see [Zilles and Salisbury
1995] for a complete discussion).

Our work focuses on historical contact models, specifically the
“god-object” method devised by Zilles [1995]. Zilles’ method be-
longs to a class of methods which use a “proxy”, or a virtual object
that follows the haptic endpoint but cannot penetrate the objects in
the scene. Proxy based methods are the most popular haptic contact
models because they are relatively easy to implement, are extremely
stable, and they produce reasonably realistic haptic forces.

2.2 Proxy Contact Models

The key element of the proxy contact model family is the virtual
object, or proxy, that represents the haptic interface in the virtual
scene. The proxy, both frictionless and massless, is connected to the

84

Proxy

Virtual
Spring

Haptic
Endpoint

Figure 2: The virtual spring connecting the proxy and the haptic
endpoint.

haptic endpoint through a simple linear spring model as shown in
Figure 2. Since the proxy cannot penetrate virtual objects, touching
an object will cause the spring to stretch and apply a corresponding
force on the user through force feedback. At the same time, the
proxy will slip along the surface until it either falls off or reaches
the point that is closest to the haptic endpoint (effectively moving
to a constrained local minimum on the surface through gradient de-
scent). This minimization operation, which is similar to the way
that water will run downhill and collect in low areas, is at the heart
of all proxy contact model algorithms.

Existing proxy contact models generally distinguish themselves
in one of three areas: object representation, proxy shape, or mini-
mization technique. Often, the first two areas are selected to make
distance minimization as fast and easy as possible. The majority of
proxy models use a polygonal object representation although some
use other representations such as implicit functions [Salisbury and
Tarr 1997] or NURBs [Thompson II et al. 1997]. To simplify min-
imization, proxy shape is generally restricted to a point or, in some
cases, a sphere [Ruspini et al. 1997]. Although it is beyond the
scope of this paper, many contact models also allow for additional
features such as friction and force shading (polygon normal interpo-
lation to make the surface feel smoother) [Morgenbesser and Srini-
vasan 1996].

Both of the most popular proxy contact models, Zilles’ god-
object algorithm [Zilles 1995; Zilles and Salisbury 1995] and Rus-
pini’s virtual proxy algorithm [Ruspini et al. 1997], use a polygonal
object representation. The main difference between the two is that
the god-object algorithm implements a point proxy while the vir-
tual proxy algorithm implements a sphere proxy. Minimization in
both algorithms is actually quite similar since Ruspini minimizes
in configuration space (where each object is grown by the radius of
the sphere) using a point proxy. For both algorithms each polygon
contributes a constraint plane that limits the motion of the proxy —
while Zilles uses the actual polygon planes, Ruspini uses the tan-
gent planes of the configuration space objects.

2.3 General Proxy Algorithm

A generalized proxy algorithm can be used to describe the behavior
of both the god-object algorithm and the virtual proxy algorithm.
The basis of the general algorithm is a list of constraints, initially
empty, that restricts the motion of the proxy as it moves towards
the haptic endpoint location. During each haptic update, the proxy
attempts to move towards a goal location (initially the haptic end-
point) until it either reaches the goal or collides with another poly-
gon that adds another constraint plane, resulting in a new goal lo-
cation. The goal location, or constrained local distance minimum,
may be calculated from the set of active constraints using Lagrange

Figure 3: General proxy minimization: proxy starts at 1 and moves
towards haptic endpoint, colliding with surface at 2, and slides to
the local distance minimum at 3.

Figure 4: General proxy algorithm constraint release limitations:
proxy starts at 1 and terminates at 2 instead of 3, causing either
a) floating proxy or b) stuck proxy.

multipliers as described in [Zilles and Salisbury 1995]. The whole
minimization process will terminate within three iterations (with a
point proxy) because three constraints will restrict the proxy mo-
tion in three dimensions to a single point. Figure 3 illustrates the
process in two dimensions for clarity.

On small surfaces, since the haptic update rate is typically 1 kHz,
the proxy will rarely cross over more than one triangle during each
haptic update. On large surfaces the proxy may need to cross over
10 triangles or more, yet the general proxy algorithm cannot actu-
ally cross over more than one triangle because it does not release
constraints once they are added to the active constraint list. There
are two problems that may result from this: Figure 4a demonstrates
a "floating’ proxy that results if the surface slopes away from the
current constraint and Figure 4b demonstrates a ’stuck’ proxy that
can occur if the surface slopes toward the current constraint. These
small artifacts will be unnoticable on small surfaces because of the
fast update rate but will cause an apparent viscosity effect on larger
surfaces due to limited proxy speed. The constraint release problem
can be remedied relatively easily by modifying the general proxy al-
gorithm to release constraints once the proxy is no longer in contact
with the corresponding triangle.

After modifying the general proxy algorithm to include con-
straint release we found that our implementation was at least an
order of magnitude too slow. Since the Martian model contains over
100 million triangles, a fast swipe across the surface may pass over
approximately 10,000 triangles in about half a second. With a hap-
tic update loop of 1 kHz this required 20 triangles to be processed
within a millisecond. The modified algorithm has a running time
that is linear in the number of constraints that are processed (and
likewise linear in the number of triangles that the proxy crosses be-
cause each triangle adds a constraint). Since each iteration requires
at least one collision detection operation and a Lagrangian compu-
tation, we found our computers simply did not have the computa-
tional power to do tens of iterations within one millisecond.

85

We also found that the majority of general proxy algorithm com-
putation time was spent in collision detection. Collision detection
algorithms have significant overhead even if optimized for haptics
(such as H-COLLIDE [Gregory et al. 2000]) or for the specific
problem (such as the heightfield optimizations proposed in Sec-
tion 3.5). Collision detection on extremely large models is espe-
cially difficult and slow because computation increases superlin-
early as the number of polygons increases linearly.

We developed the proxy graph contact model to reduce the aver-
age amount of computation required to process each triangle by pri-
marily reducing the number of collision detection operations. The
proxy graph algorithm restricts the proxy location to be on the ver-
tices of the object during intermediate minimization steps within a
haptic update cycle to avoid collision detection as long as the mini-
mization path is in contact with the surface. The resulting algorithm
is stable and will produce almost the same results as the general
proxy contact model.

3 Proxy Graph Approach

In this section we will describe the proxy graph contact model.
First, we give an overview of the proxy graph algorithm by intu-
itively describing its operation and briefly highlighting its advan-
tages and disadvantages over previous proxy algorithms. Then we
describe the algorithm in detail and discuss its stability and termina-
tion properties. Finally, we highlight the specific optimizations we
applied when we used the proxy graph algorithm with heightfield
topographic map datasets.

3.1 Overview of Proxy Graph Contact Model

The proxy graph contact model requires a seamless, non-
intersecting triangular mesh consisting of a connected graph of
faces, edges, and vertices. More specifically, no two triangles in
the mesh may intersect or be positioned next to each other with-
out sharing an edge in the mesh. While the topological map ap-
plication outlined in this paper uses a heightfield object, the proxy
graph algorithm is applicable to any seamless non-intersecting tri-
angular mesh including closed objects or multiple independent ob-
jects. Generally the triangular mesh will be one sided — meaning the
proxy can pass through the back of triangles — but it is not necessary
for correct algorithm operation.

The proxy graph contact model achieves faster performance than
the general proxy model by alternating between two modes of op-
eration as shown in Figure 5a: free space minimization, or min-
imization out of contact with the surface, and minimization con-
strained by the surface. The algorithm begins in free space min-
imization, moving the proxy along the direct path to the goal, or
haptic endpoint location, until it reaches the goal or collides with an
object. If the proxy collides with an object, the algorithm switches
to constrained minimization, an optimized gradient descent along
the edges of the triangular mesh as depicted in Figure 5b. Es-
sentially, the proxy moves from vertex to vertex by following the
edges that decrease the distance between the proxy and the goal the
fastest. As the proxy moves along each edge, each of the two adja-
cent triangles are checked for local distance minima and the direct
path to the goal is checked to see if free space minimization can be
restarted.

The main advantage of the proxy graph algorithm over the gen-
eral proxy algorithm is a significant decrease in the number of col-
lision detection operations. This is achieved by minimizing along
the triangular mesh of the surface using simple gradient calcula-
tions whenever the proxy is in contact with the surface. The result
is an algorithm that has a very low time constant even though it still
has a running time linear in the number of triangles crossed during
each haptic update.

a)

Figure 5: Proxy graph behavior: a) side view showing alternation
between free space minimization (dashed lines) and constrained
minimization (solid lines) b) overhead view of a flat triangulation to
demonstrate the path the general proxy takes (dotted line) and the
path the proxy graph algorithm takes (solid line).

Figure 6: An illustration of how a small error from vertex tracing
causes an alternative local minimum to be found. Proxy at 1 moves
towards endpoint, colliding with surface at 2, and instead of moving
to local minimum at 3 it starts at the vertex and moves to 4 because
that edge initially decreases distance faster.

Although the proxy graph is effectively equivalent to the general
proxy algorithm there are some drawbacks. First, because the algo-
rithm alternates between free space minimization and constrained
minimization (without collision detection) the algorithm will only
work with non-intersecting triangular meshes, not a serious draw-
back with physically consistent data. Second, because the proxy
location is restricted to vertices during constrained minimization,
there will be small errors between the ideal minimization path and
the actual path. These small errors can cause the proxy to slip into
the area of a different local minima (Figure 6) or collide with dif-
ferent portions of the surface when it takes a slightly different path
through free space. The user will generally not notice the differ-
ence though because the errors will be small and it is difficult to
distinguish between the proper behavior and the actual behavior.

3.2 General Proxy Graph Algorithm

The proxy graph algorithm runs during each haptic update cycle
to compute a new proxy location from the current haptic endpoint
position and the previous proxy position — this new location is then
used to compute the virtual spring force applied to the user. Figure 7
depicts a complete flow chart outlining the algorithm. As with all
proxy algorithms, the purpose of the proxy graph contact model
is to minimize the distance between the new proxy location and
the haptic endpoint location, or goal, while being constrained by
the surface. Two different types of minimization occur: free space
minimization and constrained minimization.

Free space minimization occurs whenever the path from proxy to
goal is unobstructed by the surface. A single collision test is used
to advance the proxy until it either reaches the goal or contacts a
triangle in the scene. A collision with a triangle begins constrained

86

B

Cc B

A
0
a8
G"A

A
\ Edge Gradient = cos(theta)
([

G

Figure 8: Illustration of the edge gradient computation for edge AB

and goal location G: Edge gradient = cos(0) = ﬁ . Hﬁ%gﬂ

minimization, or gradient descent along the edges of the triangu-
lar mesh, beginning with the collision triangle vertex that is closest
to the goal. Constrained minimization will continue until a local
distance minimum is found at a vertex, edge, or adjacent triangle.
Free space minimization may also resume if the path from the cur-
rent vertex to the goal is unobstructed by the adjacent faces of the
vertex.

The algorithm spends in the majority of its time in constrained
minimization so it needs to be made as fast as possible. This is
accomplished by restricting the proxy location to vertices during
gradient descent and greedily choosing to trace along the edges that
decrease the distance to the goal the fastest. At each vertex, we
choose the edge with the smallest edge gradient, or dot product be-
tween the normalized vector along the edge and the normalized vec-
tor from the goal to the vertex (this is effectively the cosine of the
angle between the two vectors, as depicted in Figure 8). An edge
gradient is negative if a small step along the edge will decrease the
distance to the goal (the more negative the edge gradient, the faster
distance will decrease). If the gradients of all edges are positive
then no step along any edge or face will decrease the distance to
goal; the current vertex is the local minimum and final proxy loca-
tion. Otherwise, the edge with the most negative edge gradient will
decrease the distance to the goal fastest — the proxy should move to
the vertex at the end of this edge as long as it is closer to the goal
than the current vertex.

If the end vertex of an edge with a negative edge gradient hap-
pens to be further from the goal than the current vertex we know
that the distance from proxy to goal as the proxy moves along the
edge must have initially decreased and then increased. This means
that there is a local minimum on the edge and possibly other local
minima on adjacent faces. The final proxy location will be the edge
or face local minimum that is closest to the goal.

We can find the local minimum on a face or edge by computing
the orthogonal projection of the goal location onto that face plane
or edge line and verifying the projected point is within the bound-
aries of the face or edge. The orthogonal projection is the unique
point on the face or edge where the vector from that point to the
goal is perpendicular to the face plane or edge line. The orthogonal
projection of a point G onto an edge starting at vertex A with a unit
length direction vector D is:

Poyge =A+[D-(G—A)|+D (1

And the orthogonal projection of G onto a face plane going
through vertex A with unit length normal N is:

Prace =G—[N-(G—A)]*N;)

The algorithm we have outlined will generally find the local dis-
tance minimum the majority of the time. Occasionally though, con-
strained minimization using gradient descent will fail due to a far
edge crossing, described in the next section.

proxy = last proxy location
goal = haptic endpoint location

proxy = v

Collision along v = vertex of

Does vector from

line between proxy
and goal?

collision triangle
closest to goal

\ 4

proxy = goal

i |

v

v to goal collide with
djacent triangle?,

Compute edge with
minimum gradient:
mingrad = minimum gradient
w = vertex on other end of edge

proxy = closest minimum
to goal of edge or two
adjacent faces

5 -
...... -

A 4 S

=~ N
< return proxy)

Face minimum
on far edge?

// \\
Have we processed "~

~ 2 9 _~
~ ghis far edge before? ~

Is w closer
to goal than v?

I Yes 0~ - e R
o = | "V = vertex on far _:
________ j proxy=minimum - LY Iedge closest to goal |
: on far edge i V - N
. ge__ ! Yes - No :

-
-
-
-

Figure 7: A flowchart depicting the proxy graph algorithm. The solid lines show the common paths of execution (larger lines show which
paths are taken most often) and the dotted lines show paths that are very rarely taken.

3.3 Far Edge Crossing Problem

During constrained minimization there will sometimes be a path
across a face that decreases distance to goal faster than either of
the adjacent edges but the orthogonal projection of the goal, or pro-
jected minimum, will not be within the edges of the triangle. As
shown in Figure 9, a local minimum will not be found on the face
and the algorithm outlined so far would terminate with a local min-
imum on the adjacent edge. This would create a noticable artifact
though, since the desired path of the proxy would be to reach some
other local minimum by moving across the face to the far edge of
the triangle.

The far edge crossing problem may be better understood by an-
alyzing distance minimization on the plane of each face adjacent
to the current vertex. Since the projected minimum is the point on
the plane that is closest to the goal any path along the face that
decreases distance to the goal must also decrease distance to the
projected minimum. Or, alternatively, the path on the face that de-
creases distance to the goal the fastest is the direct path from the
current vertex to the projected minimum. This fact allows us to
explore minimization paths along a single face in two dimensions
instead of three dimensions. It also means that, in the case of the

87

far edge crossing, the point on the face that is closest to the goal is
actually a point on the far edge since that point is also closest to the
projected minimum.

Far edge crossings may be easily detected by testing if the pro-
jected minimum is within the lines of the two edges adjacent to the
current vertex but outside of the far edge. Since the triangle min-
imum is on the far edge, the proxy graph algorithm can avoid the
far edge crossing problem by continuing constrained minimization
with the vertex on the far edge that is closest to the goal. There
will be at least one path from this new vertex that will continue to
decrease distance to the goal by moving towards the far edge mini-
mum, even though the new vertex is further from the goal than the
current vertex.

It is possible that there is an edge leaving the new vertex that
has a smaller edge gradient than the far edge. In this case, while
the ideal minimization would have crossed the far edge, the proxy
graph minimization will search in a different area and reach some
other local minimum. The user will generally not notice this be-
cause it is difficult to predict proxy behavior in these situations.
But, the fact that the new vertex is further from the goal than the
current vertex makes it possible for the new path to actually lead to
the original far edge crossing vertex, causing an infinite loop. The

Figure 9: Illustration of the far edge crossing problem. Triangle
ABC is shown with its corresponding face plane where A is the
current vertex and AB is the edge with minimal gradient. P is the
projected minimum resulting from orthogonally projecting goal po-
sition G onto the face plane. Since P is not within the boundary of
triangle ABC a local minimum would not be found on the face and
the edge minimum E would be the result if far edge crossings were
not detected (even though the path across the triangle would result
in a smaller distance).

proxy graph algorithm avoids these extremely rare loops by main-
taining a small list of vertices where far edge steps have occurred —
if the same vertex is encountered twice it terminates with the proxy
at the face minimum found on the far edge.

We can demonstrate correct algorithm operation in spite of far
edges by enumerating the possible projected minimum locations in
the plane of a triangle and show that each will be handled correctly.
Figure 10 depicts the face plane of a triangle ABC where vertex A
is the current location of the proxy and edge AB has a negative edge
gradient that is smaller than all others leaving A. Three guidelines
are drawn in the diagram to split the face plane: 1 is the angular
bisector of angle CAB, 2 is the perpendicular bisector of edge AB,
and 3 is a line normal to AB denoting projected minimum locations
where the edge gradient for AB cease to be negative. Using these
guidelines, the projected minimum may exist in one of four areas
where either a local minimum is found correctly or the algorithm
will continue searching from another vertex. If the projected min-
imum is in area (a) vertex B will be closer to the goal then vertex
A and the algorithm will continue searching at vertex B. If the pro-
jected minimum is in area (b) then the projected minimum is not
actually on triangle ABC — there will either be a local minimum on
edge AB or a local minimum on the adjacent face (which can be
treated with the same method as this face). A projected minimum
in area (c) will produce a true local minimum on face ABC because
it is within its boundaries. A projected minimum in area (d) causes
a far edge crossing, but continuing searching from B or C will allow
the minimum to be found.

It is important to realize that far edge crossings, although a rel-
atively uncommon occurrence, become more common as the trian-
gular mesh becomes more uneven. Since area (d) in Figure 10 will
grow if angle CAB increases and/or edge AB becomes longer in re-
lation to edge AC, it is best to keep all edge lengths similar sizes and
all angles less than 90 degrees. This can be accomplished by retes-
selating the triangular mesh as needed if it is uneven. In the case of
this paper, the topographic data did not require any retesselation.

3.4 Stability and Termination

As with any haptic algorithm it is important to demonstrate that the
proxy graph contact model is stable. The best way to ensure sta-
bility is to show that small changes in endpoint position will not
be amplified into disproportionately large forces which can cause

88

Figure 10: The subdivision of the triangle plane showing areas
where the projected local minimum may lie for use in analyzing
the behavior of the proxy graph algorithm.

vibration and/or unpredictable behavior. For the proxy graph algo-
rithm, this is simply a case of showing that the final proxy location
will be at a local distance minimum at the end of each haptic up-
date. If the proxy always terminates at a local minimum then the
distance between the proxy and the goal will never increase faster
than the haptic endpoint moves. Since the virtual spring constant
determines how much the force increases for a corresponding in-
crease in distance, the resulting simulation will be stable as long as
the spring constant is within the stable range for the haptic device.

The proxy graph algorithm always terminates at a local mini-
mum on a vertex, edge, or face as demonstrated in Figure 10. In
the rare case of a far edge crossing, the proxy graph algorithm may
not stop at the same minimum as the general proxy algorithm, but it
will stop at a local minimum. Likewise, in the extremely rare case
of a far edge loop the algorithm will terminate at the minimum on
the far edge, but our testing has shown that this does not happen
enough to influence stability.

Termination of the proxy graph algorithm is also relatively easy
to show because every step the algorithm takes will decrease the
distance to the goal — except for far edge steps. The algorithm
avoids infinite loops due to far edge steps by maintaining a list of
far edge steps that occurred during that haptic update and terminat-
ing if a loop is detected. As a result, the proxy graph algorithm will
always terminate.

3.5 Heightfield Dataset Optimization

Although the proxy graph algorithm will work with any non-
intersecting triangular mesh, our implementation uses a 2 1/2 di-
mension data set, or height field. A height field, commonly used
for topographic maps, consists of evenly spaced elevation values
in a two-dimensional grid. The surface is triangulated by adding a
diagonal edge which splits each grid cell into two triangles. As are-
sult, a 2D array of floating point numbers implicitly encodes a trian-
gular mesh — efficiently storing very large datasets (exceeding one
hundred million triangles on our test machines). Also, additional
collision detection optimizations are possible because heightfields
are vertically monotone (each horizontal point has only one unique
surface point directly above or below it).

o

Figure 11: Heightfield collision detection optimizations: a) over-
head view: only cells along the path from proxy to goal are searched
for collisions b) side view: cell culling — triangle tests are only
needed in those cells (shaded) where the collision path is lower than
the highest vertex

Even though the proxy graph algorithm reduces the overall num-
ber of collision detection operations, it is still important to make
collision detection as fast as possible by capitalizing on the spe-
cial structure of the data. Our main optimization is to project the
path that is being tested for collisions onto the horizontal plane as
shown in Figure 11a. Since each point on the horizontal plane cor-
responds to only one point on the surface we can search the height
field grid cells in order using a very fast digital differential analyzer
technique. As the algorithm traverses the grid it tracks the current
height of the path where it enters and leaves each cell and whether
that path is above or below the surface. This allows a quick re-
jection of collisions in most cells because the entire path will be
entirely above the surface as shown in Figure 11b. The triangles
in the unculled cells can then be individually tested for collisions
— this can be accomplished efficiently by testing whether the path
enters the triangle cell above the triangle plane and leaves the cell
below the triangle plane.

The special properties of the height field data structure also al-
low optimization of the transition from constrained minimization
to free space minimization during the proxy graph algorithm. The
free space test determines if the path from the current vertex to the
goal is obstructed by an adjacent triangle. Due to the structure of
the height field only one adjacent triangle may obstruct the path to
the goal — in fact, we can easily determine the triangle to test by
projecting the path to the horizontal plane and using the fixed struc-
ture of the triangulation to quickly select the correct triangle. Since
the proxy is assumed to be slightly above the surface during con-
strained minimization, it is a simple test to see if the goal is above
the plane of the triangle, and hence the path is unobstructed.

4 Application Example

In this section we describe the MarsView software that we devel-
oped in order to haptically view large topographic maps. In addition
to haptically rendering the surface with the proxy graph algorithm,
MarsView implements a haptic user interface to aid the user in ex-
ploration.

4.1 Hardware

MarsView was implemented to run on an IBM-compatible PC using
the PHANTOM series of haptic devices made by SensAble Tech-
nologies (we used both the PHANTOM Desktop and the PHAN-
TOM Premium 1.5/6 DOF). PHANTOM haptic interfaces pro-
vide high-performance 3D positioning and force feedback plus a
3 degree-of-freedom orientation sensing gimbal. PHANTOM sup-
port is provided by SensAble Technologies’ PHANTOM Device
Drivers Version 3.1 and Ghost SDK Version 3.1 at a near real-time

89

e o i -‘?J

TR AT R P]
e
N et
at® - e

Figure 12: A typical MarsView window depicting Olympus Mons.
The user interacts with the surface using the red cursor in the fore-
ground. A small overview display appears in the upper right hand
corner.

1 KHz servo rate under Microsoft Windows 2000. Our implementa-
tion uses the gstForceField class to directly display the forces from
our contact model code on the PHANTOM. Table 1 describes the
two systems used for testing: a laptop and a high-performance dual
processor desktop PC.

4.2 User Interface

MarsView was designed to combine graphic and haptic display of
topographic maps in an intuitive and easy to use interface. We
augmented a standard OpenGL graphic display system with haptic
force feedback to allow the user to both feel the topography of the
surface and navigate within the virtual Martian world. MarsView
maintains a high framerate by dynamically dropping samples as
needed, although the speed of the proxy graph algorithm allows
the full dataset to be displayed haptically (unseen data is felt as tex-
ture). A typical MarsView window is shown in Figure 12.

The user’s main element of interaction with MarsView is a cursor
representing a point in 3D space. The cursor can be used to touch
the surface or, in conjunction with the PHANTOM stylus button
(or space bar), to change the current mode of interaction and ma-
nipulate the surface in relation to a fixed camera. Since each mode
— normal, pan, or zoom — results in radically different force inter-
action, the cursor shape changes to give a visible indication of the
current mode.

Normal mode, the most common mode of operation, allows the
user to directly touch and explore the visible portion of the sur-
face using the proxy graph contact model. In normal mode, the
cursor changes from a sphere when not touching the surface to a
downward facing cone when in contact with the surface. Addition-
ally, MarsView renders four haptic constraint walls to keep the user
within the PHANTOM workspace. MarsView will remain in nor-
mal mode until the stylus button is pressed: if the button is pressed
while in contact with the surface it will enter pan mode and if the
button is pressed while not in contact with the surface it will enter
zoom mode.

Pan mode simulates grabbing the surface with the cursor (which
changes to a vertically flattened sphere) and pushing or pulling the
surface horizontally while the vertical position is held constant. The
top sequence of frames in Figure 13 shows surface panning. The

Type | Brand/Model Processor RAM
Laptop Toshiba 3000-s353 900 MHz Pentium III 384 MB SDRAM
Desktop | Dell PWS530 Dual 1.7 Ghz Pentium Il 1 GB RDRAM

Table 1: Test System Specifications

]

Figure 13: Sequences of images of the San Francisco area showing panning (top) and zooming (bottom).

panning simulation includes inertia (any change in velocity is re-
sisted by an inertial force) and momentum (the surface will con-
tinue moving if the user releases their hold while the surface is in
motion). Momentum portrays a strong feeling of virtual mass and
allows the user to explore the surface as it moves. Walls are also
implemented in panning mode to keep haptic interactions within
the stable area of the PHANTOM workspace.

Zoom mode simulates grabbing empty space and ratcheting up
or down, while the horizontal position is held fixed, to move the
surface towards or away from the camera. The cursor changes to
a vertically elongated sphere while in zoom mode. To guide the
user to discrete zoom values, small force feedback “detents” are
created using a weak linear force. Additionally, the surface can be
rotated around the vertical axis through the cursor by rotating the
PHANTOM stylus. The bottom sequence of Figure 13 depicts a
surface being zoomed.

Since the MarsView user interface combines a number of haptic
forces, it is important to make sure that they are mixed in a stable
way. For instance, if two stable forces (such a wall constraint force
and a surface contact force) are simply added together, the com-
bined force is not necessarily stable. In our early work we would
often get vibration and unstable behavior when touching both the
constraint wall and the surface. While a complete treatment of this
issue is beyond the scope of this paper, we did find a simple solu-
tion.

Our method of guaranteeing haptic stability while combining
stable forces in the MarsView user interface is to keep the forces
linearly independent whenever possible, and when it is not possible,
attenuate them. For instance, since most forces are either horizontal
or vertical, it is easy to show that they are linearly independent — in
zoom mode, the horizontal “holding” force is independent of the
vertical “detent” force. This leaves only two cases in the user inter-
face where forces need to be attenuated. During normal mode, the
horizontal wall and surface forces are separated with a linear fade
— the surface force fades to zero at a faster rate than the wall force
increases. During pan mode, the inertial forces are separated from

90

the wall forces by causing the mass of the surface to go to zero as
soon as the wall is contacted. This cuts off all inertial forces and
dissipates any surface momentum.

4.3 Data Sources

Our primary data set is a high resolution topographic grid of Mars
generated by the Mars Orbital Laser Altimeter project, or MOLA.
The MOLA team processes and packages data from a laser range
finder orbiting Mars on the Mars Global Surveyor spacecraft and
periodically generates an elevation grid (or EGDR) of the entire
planet. The resulting data files, free to download on the inter-
net [NASA n. d.], contain up to 66 million data points at 1/32
degree per pixel spacing (approximately 1.9 km).

Of course, any type of elevation data may be rendered with the
MarsView algorithm, so we added support for topographic maps of
earth that can be obtained from the USGS (U.S. Geological Sur-
vey). The USGS offers Digital Elevation Models, or DEMs, with
as little as 10 m spacing between each grid point and coverage of
the entire United States. Additionally, the USGS GTOPO30 data
set offers a series of maps which give global coverage at 30 arc-
second resolution (approximately 1 km). Both of these data sets are
available free to download off of the Internet [USGS n. d.] or on
various media for a small fee.

4.4 Results

Table 2 summarizes the results of MarsView performance tests for
each platform listed in Table 1 using three surfaces: MOLA data
sets at 1/16 and 1/32 degrees per pixel and the Central America
GTOPO30 data set. The high resolution MOLA data set was not
tested on the Toshiba laptop because it would not fit into mem-
ory. Haptic update time, or the amount of processor time used
for haptic computations each millisecond, was measured using the
HLOAD.EXE program (distributed with the PHANTOM device
drivers). Baseline values were obtained by holding the cursor away

Data Set Samples/Polygons

Average Haptic Update Time (milliseconds)
Toshiba 3000-s353 | Dell PWS530

MOLA 1/16 deg/pix
MOLA 1/32 deg/pix
GTOPO30

5760x2880/33.2 mil
11520x5760/133 mil
| 4800x6000/57.6 mil |

13 -.17 .08 - .10
n/a .08 -.12
13- .21 .08 -.12

Table 2: Test results showing haptic computation time during each update (updates occur every millisecond).

from the surface and maximum values were obtained by swiping
the cursor as quickly as possible across the surface.

Table 2 shows that the proxy graph contact model is quite effi-
cient for surfaces consisting of millions of polygons: in all cases,
haptic computations take up less than 25% of available processing
time. It is also important to notice that the baseline value, which
occurs when the user is not touching the surface, contains the over-
head of the haptic process (such as drivers) and the actual process-
ing of the proxy graph algorithm is the time above this baseline.
Since the running time of the algorithm will grow linearly with the
number of triangles that the proxy crosses during each update we
could easily get another order of magnitude of resolution in each
dimension, or two orders of magnitude more triangles. We extrapo-
late that a dual 1.7 GHz Pentium III could render a heightfield con-
taining upwards of 10 billion triangles, assuming enough memory
was provided (our current implementation would require approx-
imately 50 GB of RAM to store a surface that size using 8 byte
doubles).

In order to estimate the frequency of certain proxy graph algo-
rithm events we logged algorithm behavior while exploring the 1/16
degree/pixel MOLA dataset. We found that the algorithm averaged
1.01 collision detection operations per haptic update — the extra 1%
beyond the initial collision detection operation is due to the proxy
leaving contact with the surface within updates. In addition, when
we moved the proxy as fast as possible across the surface the al-
gorithm visited an average of 13.4 vertices during each update —
roughly corresponding to 7 to 14 triangles (since no more than two
vertices of a single triangle will be visited). This is a significant
reduction in the number of collision detection operations since the
general proxy algorithm would require at least one collision detec-
tion operation per triangle.

In addition to logging collision detection tests and vertices vis-
ited we also logged the number of far edge crossings and far edge
loops. We found that far edge crossings are very rare on our datasets
—no far edge crossings were detected at all in the unscaled dataset.
We were able to cause regular far edge crossings by scaling the ver-
tical height of the data by 20 and exploring in steep areas with very
narrow, elongated triangles. For instance, we found that zooming
in on the walls of Valles Marineris, a deep Martian canyon, caused
far edge crossings to occur in approximately 3.5% of haptic up-
dates. Far edge loops were even more rare — in the test above they
occurred in .1% of far edge crossings. We conclude that far edge
crossings are very rare for most topographic datasets.

4.5 Haptic Feel and Texture

While the majority of this paper has been concerned with algo-
rithms, the user experience is arguably the most important feature
of a contact model. We found that the proxy graph algorithm re-
sults in a haptic rendering that is indistinguishable from other point
proxy algorithms. There are no noticable artifacts in surface ren-
dering, including the cases where surface triangles are very large or
small due to zooming. Large, smooth areas feel slippery due to the
lack of friction while rougher areas tend to feel sticky’ since the
point proxy will get stuck in even the smallest valley in the model.

One advantage of the ’stickiness’ of a point proxy is that the tex-
ture of the surface is readily apparent to the user — high frequency

91

surface texture is generally felt as a sort of sticky friction. The
abrupt change in force when moving from triangle to triangle that is
distracting when triangles are very large feels like friction or texture
when triangles are extremely small. While an in depth discussion of
texture is well beyond the scope of this paper (see [Minsky 1995])
the proxy graph algorithm does enable the user to feel texture due
to the high density of triangles.

5 Future Improvements

The primary strength of the proxy graph algorithm is its ability to
render very large triangularized models — often the proxy graph al-
gorithm can render much larger models than can fit into system
memory. One possibility would be to adapt the proxy graph algo-
rithm to use an implicit data representation such as a subdivision
surface or a parametric surface. During the algorithm the local
mesh around the proxy could be computed as needed, allowing a
detailed surface to be represented very compactly.

Although the proxy graph algorithm can render multiple objects
as long as they do not intersect or touch, it would be advantageous
to be able to render intersecting objects. One possible avenue of
research would be to treat each surface as a constraint and combine
them using a method similar to the general proxy algorithm. The
main difficulty of this approach would be to efficiently determine
if the proxy collides with another surface during constrained mini-
mization.

Some features would be difficult to add to the proxy graph al-
gorithm because of the method of constrained minimization. For
instance, since the proxy graph algorithm traces along edges, sta-
ble force shading cannot be added by simply perturbing normals as
in [Ruspini et al. 1997]. Future research should investigate the ad-
dition of force shading and friction by modifying proxy dynamics.

6 Conclusion

MarsView is a successful implementation of the proxy graph al-
gorithm for topographic elevation maps and demonstrates high-
performance haptics on standard PC-compatible computers. The
height field data structure allows special optimization resulting in
successful simulation of surfaces containing more than 100 million
triangles. In fact, based on performance results, surfaces an order of
magnitude larger could be simulated if they fit in system memory.
MarsView also demonstrates that a responsive haptic user interface
aids in intuitive exploration of landscape data.

The proxy graph algorithm allows efficient haptic display of very
large triangular meshes consisting of hundreds of millions of poly-
gons. Alternation between minimization in free space and mini-
mization constrained by the surface allows the proxy graph algo-
rithm to drastically reduce the number of costly collision detection
tests. In addition, by restricting the proxy location to vertices during
constrained minimization, the algorithm can use very fast gradient
tests to process multiple triangles per haptic update yet preserve al-
gorithm stability. Generally, the small errors that results from trac-
ing along the edges of the triangular mesh are unnoticeable to the
user. The main restriction of the proxy graph algorithm is that it

cannot handle multiple intersecting objects—this is the focus of our
future research.

This work is, in part, motivated by the idea that visual and hap-
tic interaction with information can enable discovery of interesting
features and perhaps enable new insights that might not be possible
with less complete sensory engagement. By facilitating the simul-
taneous multi-sensory integration of high dimensionality data we
engage our ability for sensory fusion and set the stage for more
complete assimilation of the information.

Though the research program reported herein was not tasked to
take steps to assess the utility of haptic interaction in planetary sci-
ence data mining, we have made an important and necessary ad-
vance in the technology needed for multi-sensory interaction with
such information. By significantly speeding up the rate of haptic
rendering, we enable physical exploration of geometric datasets that
have much greater dynamic range (ratio of largest to smallest phys-
ical feature) of information than previously possible. Relevant not
only to the current project, we expect this new rendering approach
to have value in other haptic technology application domains such
as multi-point contact modeling for simulating more realistic and
natural physical interactions — such as that required for simulation-
based medical training, molecular modeling, and sculpting of digi-
tal objects.

7 Acknowledgements

This project was supported, in part, by NASA/Ames Grant NCC-
2-1121. We would like to gratefully acknowledge our friends at
NASA Headquarters and Ames Research center who helped en-
courage, launch, and support this project, and especially the efforts
of Michael Sims, Butler Hine, Hans Thomas, Ted Blackmon, and
Lawrence Edwards at Ames, and David Lavery at NASA Headquar-
ters. In addition, the authors would like to thank Federico Barbagli,
Charity Lu, Francois Conti at Stanford for their support and Brian
Anthony at MIT for his inspiration and enthusiasm in early project
conception.

References

GRANGE, S., CONTI, F., ROUILLER, P., HELMER, P., AND
BAUR, C. 2001. The delta haptic device. In Mecatronics 2001.

GREGORY, A., LIN, M. C., GOTTSCHALK, S., AND TAYLOR, R.
2000. Fast and accurate collision detection for haptic interaction
using a three degree-of-freedom force-feedback device. Compu-
tational Geometry 15, 69—89.

MASSIE, T. H., AND SALISBURY, J. K. 1994. The phantom haptic
interface: A device for probing virtual objects. In Proceedings
of the ASME Winter Annual Meeting, Symposium on Haptic In-
terfaces for Virtual Environment and Teleoperator Systems.

MINSKY, M. D. R. 1995. Computational Haptics: The Sandpaper
System for Synthesizing Texture for a Force-Feedback Display.
PhD thesis, MIT.

MORGENBESSER, H. B., AND SRINIVASAN, M. A. 1996. Force
shading for haptic shape perception. In Proceedings of the ASME
Dynamics Systems and Control Division, vol. 58.

NASA. Mars orbiter laser altimeter (mola) science investigation.
http://Itpwww.gsfc.nasa.gov/tharsis/mola.html.

NESBITT, K. N., ORENSTEIN, B. J., GALLIMORE, R. J., AND
MCLAUGHLIN, J. P. 1997. The haptic workbench applied to
petroleum 3d seismic interpretation. In Proceedings of the Sec-
ond PHANToM Users Group Workshop.

92

RusPINI, D. C., KoLAROV, K., AND KHATIB, O. 1997. The
haptic display of complex graphical environments. In Computer
Graphics (SIGGRAPH 97 Conference Proceedings), ACM SIG-
GRAPH, 345-352.

SALISBURY, J. K., AND SRINIVASAN, M. A. 1997. Phantom-
based haptic interaction with virtual objects. IEEE Computer
Graphics and Applications 17, 5 (September-October), 6-10.
IEEE Computer Society.

SALISBURY, J. K., AND TARR, C. 1997. Haptic rendering of
surfaces defined by implicit functions. In Proceedings of the
ASME Sixth Annual Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 61-68.

STOKER, C., ZBINDEN, E., BLACKMON, T., AND NGUYEN, L.,
1999. Visualizing mars using virtual reality: A state of the art
mapping tool used on mars pathfinder. Paper presented at the
Extraterrestrial Mapping Symposium: Mapping of Mars, July.
ISPRS, Caltech, Pasadena, CA.

THomPSON II, T. V., JOHNSON, D. E., AND COHEN, E. 1997.
Direct haptic rendering of sculptured models. In Symposium on
Interactive 3D Graphics, 167-176.

USGS. Eros data center -
http://edc.usgs.gov/products/elevation.html.

products.

ZILLES, C. B., AND SALISBURY, J. K. 1995. A constraint-based
god-object method for haptic display. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, Human Robot In-
teraction, and Cooperative Robots, vol. 3, 146—151.

ZILLES, C. B. 1995. Haptic Rendering with the Toolhandle Haptic
Interface. Master’s thesis, Massachusetts Institute of Technol-

ogy.

